Human and machine learning

Tom Giriffiths
Department of Psychology
Cognitive Science Program

University of California, Berkeley



Computation




Information processing




Information processing




Convergent evolution

Computers and brains face similar problems...
Do they use similar solutions?
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Chyrillic?
ESFHanﬂ has “I"?
From: Hapga <haxilyki@whayne.com> = ||n ks?

Subject: [SPAM:###] Mupraabl 4yBCTBEHHOCTH
CAPS?

Date: February 26,2009 8:24:43 AM PST
To: Tom Griffiths
Reply-To: haxilyki@whayne.com

ME284 Bor ato ga!

MY607 Takne HeOOLIKHOBEHHbLIE XEHLNHbI

BK468 OHW HEBEPOATHO YYBCTBEHHLIE

BO163 OHu cnocobHbl pa3byauTe xenaHue B N0BOM MyXunHe
X752 Xouews nposepuTL?

From: Renning Fieldson <peroxisomal @austexdies.com>
Subject: [SPAM:####) [SPAM:#####] More orgasmss
Date: February 25, 2009 3:34:45 PM PST
To: Tom Griffiths
Reply-To: Renning Fieldson <peroxisomal @austexdies.com>

New OOrgasm Enhancer
Click HERE

Him from his mind, went to work on his favourite after the
vote result is posted to news.announce.newgroups, clothes
on a neglected bed, and its pillow was he instantly saw
that it would be impossible for it out of his hide.'illustration:
lincoln and.

From: Staci Malone <gershon@psych.stanford.edu>
Subject: [SPAM:####] [SPAM:######] Show your friends how filthy rich You are
Date: February 23,2009 9:56:40 PM PST
To: Jillian Irwin <gershon@psych.stanford.edu>

Loving yourselfis the first step in loving life. And what better way to do it, than by getting
http/nocefawef.cn

Now that the Holidays are behind us and stores everywhere are offering their lowest pric
distinguished watch at a ridiculously low price!

http/nocefawef.cn

Don't delay your pleasure: our incredible watch collection awaits you at Exquisite Reps,

Not spam

From: National Science Foundation Update <nsf-update @nsf.gov>
Subject: How to Teleport Quantum Information from One Atom to Another
Date: February 26,2009 5:40:02 AM PST
To: Tom Griffiths
Reply-To: National Science Foundation Update <nsf-update @nsf.gov>

How to Teleport Quantum Information from One Atom to Another

Researchers have shown for the first time how to use a process ¢z
More at http //’www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=1"

This is an NSF Discoveries item.

This e-mail update was generated automatically based on your subscription to the |
messages.

You can adjust your National Science Foundation Update subscriptions or delivery
stop subscriptions on this page. If you have questions or problems with National Sc

F jatio 1201 W Bou A A 222 703-292

National S

From: ABC NewsMail <newslists@your.abc.net.au>
Subject: ABC NewsMail - morning edition - text only
Date: February 25,2009 1:10:00 PM PST
To: Tom Griffiths

ABC News
Thursday February 26, 2009
(For more news visit ABC News Online at hitp//abc.net.au/news/)

To receive this email in HTML with your preferred topics, log in with your email address at:
http:/abc.net.au/news/alerts/default.htm

ABC NewsMail headlines at a glance

*9 dead, more escape, after Amsterdam jet crash®
*Coroner to rule on Beaconsfield collapse*
“Mumbai siege gunman charged with ‘waging war"

*Hot conditions to test crews on 1,000k fire front*
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Bayes’ rule

Posterior Likelithood Prior
probability l / probability
\
ph1d) = - PEIWPU)
Y P(dIh)P(h)
h'EH

Sum over space

h: hypothesis of hypotheses

d: data



Bayesian inference

P(x1c)P(c)
EP(X lc)P(c)

P(Alx) }g(x | A) P(A)
P(Blx) P(x|B) P(B)

P(clx)=

simplifies for 2 categories

odds form

+ 1o
P(x, | B) gP(B) Bayes

log P(A | X) — log P(X | A) + lgg P(A) log odds form
P(Blx)  CPxIB) °P(B
P(Alx) Elog P(x, 14) P(A) Naive



A simple classifier

P Alx Plx, |A P(A
(A10)_$)po PO LA o P
P(B Ix) “~ T P(x,|B) P(B)
Xk P(x,|spam)  P(x,|not spam)
= Cyrillic? high low
= has “I"? high medium
= links? high medium
= CAPS? medium low
= has “Viagra”? medium low
= has “Science”? low medium



Coevolution

From: Renning Fieldson <peroxisomal @austexdies.com>
Subject: [SPAM:####] [SPAM:#####) More
Date: February 25, 2009 3:34:45 PM PST
To: Tom Griffiths remove Spam

Reply-To: Renning Fieldson <peroxisomal @austexdies.com>

features
Nevt OOrgasm Enhancer
Clic
Him from his mind, went to work on his favourite after the
vote result is posted to news.announce.newgroups, clothes add non-s pam
on a neglected bed, and its pillow was he instantly saw
that it would be impossible for it out of his hide.'illustration: features
lincoln and.




Categorization

cat « small A furry A domestic A carnivore




Posner & Keele (1968)

. ;/Prototype
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Family resemblance

> Prototype




Prototypes with features....

Prototype Distance
e.g., binary vector with most  e.g., Hamming distance
frequent feature values dey) = Sl - i,

k

choose category A4 if

d(x,u,) < d(x,uy)

E‘Xk = MA,k‘ < E‘xk ~ MB,k‘

k k



Bayes and prototypes

P(Alx) P(x, 1A) P(A)  Naive
Elog P(x, | B) +log P(B)  Bayes

choose category 4 if
P(Alx)> P(B|x) ElOgP(Xk |A) > ElogP(xk | B)
k k

P(Alx) >0 define
P(B | x) P(kuA)={

log

l-¢ x, il 2

£ otherwise

Elog P(xk | A) >0 P(Alx) > P(B|x) if and only if...

P(x, | B)
sssuming Py —py D% Hasl < 2t



Spam filters and classification

A statistical analysis of the problem of
classification yields a simple solution

— weighted combination of features, with a threshold
for final classification
* This solution is consistent with a theory of
human category learning: prototypes

* Current research uses more sophisticated
strategies to solve this problem, which also
have analogues in human cognition
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Retrieving facts




Bayes for search

Data d are the terms of the query
Hypotheses / are candidate webpages

Assume likelihood P(d|h) is constant for all
webpages containing query, and 0 otherwise

— posterior probabilities of matching webpages
depend only on the prior...

What prior P(#) should we use?



Using link information

webpages
01001011 ...

webpages




How Google works
(in 1998)

» Use p to denote the vector of importances of
each of n webpages (one entry per webpage)

* Use L to denote the “link matrix”, where L, = 1
if a link exists from jtoiand 0 other\lee

 How should we define importance?
— one option: number of pages linking to a page

=EL,.]. p=L1



How Google works
(in 1998)

* A link from an important page should be worth
more than a link from a less important page

* A link from a page making few links should be
worth more than one making lots of links

» "PageRank” algorithm defines importance as

p=Mp where Ml.j= L
2Ly
k




An analogy...

* One model of knowledge: a semantic network

(a) world wide web ib) semantic network
web [ 1 —
wiord
paga o web . i
! . page wiord
N .
nypeink . association
A 1
web ’ " 1
page wab _.l“:lr i i
- page wiord

« Similar statistical properties to the web
— short paths, power-law distributions, clustering

» Can we connect search to memory?



Word association

Cue:
PLANET

(Nelson, McEvoy & Schreiber, 1998)



Word association

Associates:

EARTH
PLUTO
JUPITER
NEPTUNE
VENUS
URANUS
SATURN
COMET
MARS
ASTEROID

Cue:
PLANET

(Nelson, McEvoy & Schreiber, 1998)



Word association

associates
01001011 ...

CUCS




Word association

HEAD ACHE
OEASE O
PAIN
O
COMFORTABLE STOMACH
oFGECLINEFC
oHUF!T
oSLEEP
o MASSAGE
oHULA o
CALM

VACATION
o
CRATER
Osun
Oistanp
LAVA
VOLCANO
Ocrupt nWOFdS B 57000



An experiment

* Name the first word that comes into your head
beginning with the letter D

« Parallels web search... retrieve a set of words
(webpages) that match a letter (query)

* Look at ranks of responses under
— PageRank of words within word association network
— number of times word appears as an associate
— overall word frequency



Praparian human respoansas
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How Google works
(on April 1, 2002)

J File Edit View Favorites Tools ”“Address I@ http:ﬁwww.google.com}'technologw’pigeonrank.htrrzl H GOOSIC 'I “ &= Back

GO L)gle Our Search: Google Technology

Home The technology behind Google's great results

About Google As a Google user, you're familiar with the speed and accuracy of a Google search. How exactly does Google manage to
Help C | find the right results for every query as quickly as it does? The heart of Google's search technology is PigeonRank™, a
Delp Lentral system for ranking web pages developed by Google founders Larry Page and Sergey Brin at Stanford University.

Google Features

Qur Technology
» PigeonRank

Find on this site:

li
Search |

Building upon the breakthrough work of B F. Skinner, Page and Brin reasoned that low cost pigeon clusters (PCs) could
be used to compute the relative value of web pages faster than human editors or machine-based algorithms. And while
Google has dozens of engineers warking to improve every aspect of our service on a daily basis, PigeonRank continues to
provide the basis for all of our web search tools.



Search and memory

Human memory and internet search share the
problem of retrieving one fact among many

Under one view of knowledge (semantic
networks) the organization of facts is similar

A simple definition of “importance” works well
In both cases...

Similar correspondences exist for more
complex kinds of search (semantic similarity)
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Inferring preferences
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Collaborative filtering

1items

01001011...

USCrs




Approaches to collaborative filtering

« Simple: compute correlation between users,
and use a weighted average of purchases

— typically divide by item frequency first

« Fast: compute correlation between items
— can be done quickly when users have few items

* Most expressive: dimensionality reduction
— make inferences about users and items



usScers

Matrix factorization

1items

01001011...

USCrS

feats.

1tems

feats.




usScers

Mixed multinomial logit model

exp(u,)

p(c=ilu)=
D exp(u,)

J
1items

01001011...

USCrS

feats.

U, = E Wik
k

1tems

feats.

/Z

(McFadden, 1973)



Developing understanding of choice

100 percent target 50 percent target 18 percent target

*aak S

¥

oAt S gt S

Y &
¥

?

2. -
(Kushnir, Xu & Wellman, 2008)




Relating choice and preference

 Assume choices follow the MML model

exp(u;)
» exp(u;)

J

 Children infer utilities by applying Bayes'’ rule

plc=ilu)=

pule) x|] | p(c, lw)|pu)



Developing understanding of choice
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(Lucas, Griffiths, Xu & Fawcett, in press)



Inferring preferences

 Collaborative filtering predicts what you will
like by using knowledge of what others like

» Different strategies exist, varying in the kinds
of information they produce and their runtime

* Even young children are capable of making
inferences about preferences, and do soin a
way that is consistent with statistical inference



Conclusion

* Brains and computers face similar problems
— an opportunity for convergent evolution

* We can find connections between the
solutions employed by the these systems

* By exploring these connections, we can begin
to think about how to help computers solve
problems that are currently solved by humans

— e.g., language learning, causal learning, science






Connecting cultural and
biological evolution

Tom Griffiths
Department of Psychology

Cognitive Science Program

University of California, Berkeley



Evolution

» Three key 1deas:
— variation
— heritable
— differential reproduction
* Evolution 1s a theory that

naturally lends itself to
mathematics...

Charles Darwin



Replicator dynamics

qu]f X; = ¢x,

/ \\

rate of change of probability type i fitness of type i
proportion of type i parent has type j child

mutation selection

(no drift due to infinite population)



Number of populations

(predicted)
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Replicator dynamics

O O

O O

O O

O O
individuals individuals

at time ¢ at time ¢ +1



Replicator dynamics
S O
e (0 .
O O
. O

individuals individuals
at time ¢ at time ¢ +1



Replicator dynamics

O biological

transmission
biological
fitness /i

O O

O O
individuals individuals
at time ¢ at time ¢ +1



Replicator dynamics

O biological
transmission

q9ij

biological
fitness /i

o -0

individuals individuals
at time ¢ at time ¢ +1



Cultural evolution

O cultural

transmission
cultural .
fitness A

O

@

9

O U

O— %3

individuals individuals
at time ¢ at time ¢ +1




Cultural transmission

How does transmission transform information?



Iterated learning
(Kirby, 2001)
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Outline

Part I: Formal analysis of iterated learning

Part II: Iterated learning in the lab



Outline

Part I: Formal analysis of iterated learning



Analyzing 1iterated learning

Py (hld) Py (hld)
< hypothems :> < hypothems :}
 Pldh) O Pudlh)
- T N T \ T
S data ) (¢ o data ) o data "Eaw
Z— > FTT— N
[-x_JI [x)

P, (h|d): probability of inferring hypothesis /# from data d

Pp(d|h): probability of generating data d from hypothesis 4



Markov chains

e (y X — P X— P X — X — P X — X —> X —> X ——

!

Transition matrix
qijzp(x(tﬂ) :j|x(t) Zi)

* Variables x") independent of history given x

* Converges to a stationary distribution under
easily checked conditions (1.e., if 1t 1s ergodic)



Analyzing 1terated learning

d %hl‘»dlﬁh "dz"h o

Py(h|d) Pp(dlh) — P(hld)  Pp(dlh) P (hld)

A Markov chain on hypotheses

h, - I,
3, PpdPy(hld) 2, PydihPy(hld)

—

>h3—

"2

corresponds to g;; in
replicator dynamics



inference

Bayesian

Reverend Thomas Bayes



Bayes’ theorem

Posterior Likelihood Prior
probability l / probability
\
P(dIh)P(h
P(h1dy = LA IDP()_
Y P(d1R)P(h')
h'eH
\
Sum over space
h: hypothesis of hypotheses

d: data



[terated Bayesian learning

Aulld) Punld) -

Assume learners sample from their posterior distribution:
P,(d 1 h)P(h)
E P.(d PR

hEH

P (hld)=



Stationary distributions

e Markov chain on 4 converges to the prior, P(h)

— the probability of choosing a hypothesis converges
to the prior probability of that hypothesis

 Intuitively,each inference allows the prior to
affect the hypothesis chosen, with the prior
itself being the only distribution not modified

(Griffiths & Kalish, 2005)



Back to the replicator dynamics...

* Replicator dynamics

dx. E
= >q.f.x; —¢x,
At j jJ j

* “Neutral model” (f; constant)

dx. E dx
L — ,.x . _X° —_— _I
dt - Lyt l dt Q-Dx

« Stable equilibrium at first eigenvector of Q,
which 1s our stationary distribution



Analyzing 1terated learning

* The outcome of iterated learning 1s strongly
affected by the inductive biases of the learners
— hypotheses with high prior probability ultimately
appear with high probability in the population
» Establishes a connection between constraints on
learning and cultural universals...

e ...and provides formal justification for the i1dea
that culture reflects the structure of the mind



Outline

Part II: Iterated learning in the lab



Serial reproduction
(Bartlett, 1932)




[terated function learning

data hypotheses

P

* Each learner sees a set of (x,y) pairs

* Makes predictions of y for new x values

 Predictions are data for the next learner

(Kalish, Griffiths, & Lewandowsky, 2007)



Function learning experiments

Stimulus:
Feedback 1 B

Response
Slider —>\4‘

=1

Examine 1terated learning with different initial data



Initial Iteration

data 1 2 3 4 5 6



Frequency distributions

data hypotheses

5 x “DUP”
P(“DUP”| -) -0
5 x “NEK”

(Vouloumanos, 2008)

* Each learner sees objects receiving two labels
* Produces labels for those objects at test

* First learner: one label {0,1,2,3,4,5}/10 times

(Real1 & Griffiths, 1in press)



Results after one generation

6

[ Ttraining stimuli
[ participants’ responsas

en
!

I
!

Frequency of target label
|

—r

0 1 2 3 4 3

Condition



a) Participants’ productions

Generations

[0 I ©8

Generations
[ I S i N e = ]

%] i)

Results after five generations

Condition O

02 4 6 8 10
o) Sampling

02 4 6 & 10

Bayesian model has a prior favoring regularization:

= L = O

Condition 1

Condition 3 Condition 4

Condition 2

Condition 5

n 2 4 & 8

10

= M
] rma

n Tw [} o
[ TR %

n

B S o B o
d= 00 P = D

[ B e R L =]

n

n

0 2 4 6 8 10 0 2 4 6 8 10

o 2 4 &6

8 10

Frequency of target label

M = L 3 = O

L ]
o2

4 6 8 10




Number of populations

(predicted)
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Genetic drift
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Conclusions

* Cultural transmission can systematically alter
information being transmitted

* The result of iterated learning 1s strongly
influenced by constraints on learning

* Despite different mechanisms, formal analogies
exist between biological and cultural evolution

— learning = mutation (but 1s a directed process)

— drift = drift (and can be a useful explanatory tool)






