

What is Life?

- A more rigorous definition:
 - Something is alive if it has the ability to ingest nutrients, give off waste products, & reproduce
 - But what are nutrients?
 - What are waste products?
 - Is *growth* important? (mountains "grow"...)
- Clearly the definition must acknowledge that life is hard to define and that there are likely to be exceptions to any rules proposed...

Attributes of Living Systems...

- Rather than defining life, can we describe it in terms of specific attributes?
- Life has at least two unique attributes:
- (1) A living system must be able to reproduce, to mutate, and to reproduce its mutations
- (2) A living system must be able to convert external energy sources into useable internal energy sources

But even this gets dicey...

- There are systems with one attribute but not both
 - Chemical Reactions
 CO₂ "reproduces"
- CO_2 + sunlight --> CO + O H_2O + sunlight --> H + OH
- But it's not alive!
- CO₂ + OH --> CO₂ + H

- Crystals
 - "reproduce" in regular patterns, get distorted (mutated)
- Fire
 - Uses "nutrients", converts energy, "grows", "reproduces", ...
- Many other "fuzzy" cases...
 - Mules? A virus? Computer programs? Robots?

The Essential Requirements

- Liquid Water
 - "Medium" for the chemistry of life (mobility, nutrients)
 - Stable over wide range of temperatures
 - Unique freezing properties help maintain stability
 - Complex organic compounds don't dissolve in water!
- Source of Excess Energy
 - Sunlight (photosynthesis)
 - Chemical (oxidation)
 - Thermal or geothermal...
- Source of Organic Molecules
 - C, H, N, O, P, S combined in both simple and complex ways
 - "Simple" organic molecules appear to be abundant out there...

Origin of Life on Earth?

- Key Questions:
- (1) Did life originate on Earth or in space?
- (2) If life originated on Earth:
 - (a) What were the conditions like on early Earth that made possible the origin of life?
 - (b) Did life originate on or near the surface, below the surface, or in the oceans?

"Panspermia"

- Swedish chemist Svante Arrhenius proposed in 1908 that life is ubiquitous in the Cosmos and that "spores" or the seeds of life were delivered to Earth essentially by accident
 - No attempt to explain how life originated, only how it got to Earth
 - How did the "spores" get off other planets? (impacts?)
 - How did the "spores" survive harsh interstellar radiation?
- More recent variation: "intentional" panspermia
 - Life was planted on Earth by space travelers
 - Popular among science fiction fans and conspiracy groupies
 - Still doesn't explain how life originated though...

Organic Molecules in Meteorites

- Some complex organic molecules (molecules containing carbon) have been found in some of the most primitive carbonaceous chondrite meteorites
 - Alkanes, benzene, paraffins, amino acids, ...

Organic Molecules in Exotic Places

- ✓ Complex organic molecules have also been found or inferred to exist in:
 - -Interstellar molecular clouds
 - -Comets
 - -Interplanetary dust particles
 - -Some dark asteroids, rings, & planetary satellites
 - -Some other "anomalous" meteorites (e.g., ALH84001)
- ✓ Did life on Earth originate from raw materials brought in by the early "rain" of debris from asteroid, comet, and cosmic dust impacts?

Could Life Have Originated on Earth?

- Hypothesized environment of the early Earth:
 - Heating of interior, release of volatiles
 - H₂, H₂O, CH₄, and NH₃
 - H₂O forms liquid ocean at Earth's P,T
 - NH₃ dissolves in water
 - Result is a highly-reducing atmosphere
 - H₂, CH₄ abundant
 - Little if any free O₂
- Can *simulate* this environment in the lab...

Life on Earth

- The Miller-Urey experiments were perhaps too simplistic, but they demonstrated that the interactions of liquid water, natural energy sources, and organic molecules leads to the production of complex organic molecules
- Even if the Urey/Miller process was not efficient enough to produce large quantities of organics, remember that organics formed elsewhere were still being delivered to the early Earth by impacts...
- The building blocks of life are abundant in the Cosmos!
- But how did the building blocks become alive ???

Life on Earth

- Very soon after the early Earth cooled and the impact rate slowed, life appeared
- How? No one knows...
- Miller-Urey and more than 50 years of subsequent experiments have not been able to reproduce the result
- Life has slowly increased the amount of free O₂ in Earth's atmosphere over time
- Atmosphere is in *disequilibrium*

Starting Simple...

- Life on Earth started simple
- Most life on Earth remains simple
- All life on Earth is similar at a basic level

"Tree of Life" for Earth, based on similarity in RNA sequences among all life forms (past and present) on this planet

(Woese, 1987)

Complexity is rare...

 A census of life on Earth today or 3 billion years ago would reach the same conclusion: life on Earth is dominated by simple bacteria!

Gould (1994)

...and Accidents Happen!

- Evolution towards more complex life forms is not necessarily inevitable
 - bacteria are very efficient life forms...
- External, even random forces play a role
 - e.g., Gould's theory of "punctuated equilibrium"
- Starting over again with the same initial conditions, could the experiment be repeated?
 - Would life form at all? (hmm...)
 - Would evolution follow the same path? (probably not)

Some Big Questions

- Has this happened elsewhere?
 - in the solar system?
 - in the Galaxy?
 - in the Universe?
- Can we use our knowledge of the formation and evolution of life on Earth to make predictions about the nature, distribution, and abundance of life "out there"?
- Should we seek simple life, or complex life?

Life on Earth

- Life developed *early* on the Earth
- Conditions have not always been ideal...
 - Changing atmospheric chemistry
 - Large-scale variations in climate
 - Active geology
 - Impacts
- The result of life's adaptability to these variations is a dizzying array of diversity

Extremophiles

- Evidence of the diversity of life is provided by groups of micro-organisms knows as extremophiles (lovers of extreme conditions)
- These life forms occupy niches of:
 - Extreme temperature
 - Extreme acidity
 - Extreme salinity
- Greatest range: prokaryotes
- Simple, single-celled organisms
- Substantial range: eukaryotes
 - More complex, nucleated, and/or multicellular organisms

Life in Extreme Environments!

- From permafrost to hot springs
- From battery acid to salty lakes
- Deep under the ocean
 - Life relies on geothermal energy
- Deep under the ground
 - Life using geochemical energy
- Some organisms have even survived long-duration exposure to the vacuum and radiation of space

Life Elsewhere in Our Solar System?

- The enormous range of diversity and ruggedness of life on Earth has only recently been recognized
- The idea of simple life beyond Earth is not as crazy as it used to be!
- We can make a "short list" of places to look:
 - Mars
 - Europa
 - Titan
 - Enceladus

And there may be more that we could add...

Life on Mars?

- Mars preserves clues that its climate may once have been very different...
- And that there is still a substantial (?) inventory of water at or near the surface...
- And that there were abundant volcanic, impact, and/or geothermal heat sources...
- Liquid water, heat sources, organic molecules... the requirements for life as we know it!

Evidence of Life on Mars from a Meteorite?

- A small number (~50) of meteorites are thought to have come from Mars
- Special one: ALH84001
- Found in Antarctica in 1984
- Thought to be a sample of *ancient* Martian crust: radiometric age around 3.5 billion years
- Cosmic ray exposure indicates ejection from Mars around 15 million to 20 million years ago
- Outer chemical evidence indicates that it fell to Earth about 13,000 years ago

Evidence of Life on Mars from a Meteorite?

- Four pieces of evidence presented by scientists that ALH84001 preserves signs of past life on Mars:
 - Carbonate minerals: precipitated from a once thicker, warmer, atmosphere?
 - Magnetite grains: similar in shape to magnetite formed bacterially
 - Complex organic molecules: specifically PAH molecules
 - Segmented, "bacterial" shapes

Landmark paper published by McKay et al. (1996) Science, 273, p. 924

But Much Skepticism!

- Is the rock from Mars?
- Was it contaminated by Earth life while sitting in Antarctica for 13,000+ years?
- There have been abiologic explanations proposed for each piece of "biologic" evidence
- No "controls" on some new methods used
- "Extraordinary claims require extraordinary evidence" --Carl Sagan
- Proponents remain steadfast, despite more than a decade of skepticism and criticism...

The Real Message of ALH84001...

- Whether or not ancient fossil microbes actually exist in this Mars meteorite may be secondary
- ALH84001 and data from telescopes and space missions appear to show that:
 - liquid water existed in the Martian subsurface
 - complex organic molecules were there too
 - energy was provided by volcanoes, impacts, geothermal
- The *ingredients* for life all appear to have existed at one time on Mars. Do they still exist today??

Life on Europa?

- Europa may have a subsurface liquid water ocean
- The ocean may be warmed by tidal energy
- Organic molecules delivered by comets over time?
- Could there be life down there?
- Finding out will not be easy
 - First, we must prove that there's an ocean
 - Then, we must figure out how to access it
- And there are ethical issues to face as well, especially if we find evidence for life there

Life on Titan?

- Complex organic chemistry in the clouds
- Molecules should sink and accumulate on surface
- Could be seas/lakes of liquid ethane (C₂H₆)?
- What happens to the organics on the surface?
 - Simple accumulation?
 - Geologic "recycling"?
 - "Evolution"?
- At T=90K, chemistry likely to be sluggish...
- The Huygens Probe studied Titan up close!

Other Possible Places for Clues

- "Hospitable" planetary atmosphere levels
 - High up on Venus?
 - Near the 1 bar level on Jupiter, Saturn?
- Subsurfaces of small bodies
- Comets
- Asteroids
- Other planetary satellites
- What surprises await?

Simple Life vs. Complex Life...

- Simple organic molecules are abundant in the solar system and beyond
- Simple, bacteria-like life forms dominate life on Earth
- Focus of Mars and Europa exploration is on uncovering evidence for simple life forms
- So why, then, should we even consider extending the search towards more complex life forms, and ultimately ones that are *intelligent*?

Why Care About E.T.s?

- Pros:
 - Increased awareness of our place in the Cosmos
 - Answers the question "Are We Alone?"
 - Maybe they will teach us new things
- Cons:
 - "Common wisdom" that complex life is rare
 - Two-way communication takes too long
 - We have enough trouble dealing with each other and other species on *this* planet...
 - Searching for them costs money
 - Maybe they will kill/eat/enslave us!

- SETI can be done scientifically
- But the search takes resources like money, people, time, equipment, ...
- How much should we devote to this search??
- Fundamentally, the answer depends on society's and individual people's balance between looking inward and looking outward

Is SETI Practical?

- Do we have valid reasons to believe that anyone else is out there?
- Perhaps...
 - The Sun is a common type of star, and there are probably > 100 billion Sun-like stars in the Galaxy
 - Planetary formation appears to be a common process around single Sun-like stars (theory and observations)
 - So: do the math:
 - 100 billion stars 30% in single-star systems 10 planets/star
 - = 300 billion planets!

Some SETI Math...

- But how many of these putative planets contain life?
- Is our solar system typical? If yes: 10%
- Is life on Earth a freak accident? If yes: ~ 0%
- So out of ~300 billion planets:
 - could be from just 1 to >30 billion in our Galaxy with life
- But how many planets have intelligent life?
- Is that intelligent life *technological*?
- And just how good are these kinds of estimates???

The Drake Equation

Astronomer Frank Drake's attempt to quantitatively estimate SETI's potential success

 $N = R_* \times f_s \times N_p \times f_e \times f_L \times f_i \times L$

- Where:
- N = # of civilizations in the Galaxy capable of communicating with us
- R_{*} = The rate of star formation in the Galaxy (stars/year)
- f_s = fraction of stars that are Sun-like
- N_n = number of planets per star
- f_e = fraction of "environmentally correct" planets
- f₁ = fraction of planets where life develops
- f_i = fraction where intelligent & technological life develops
- L = lifetime of an intelligent & technological civilization (years)

• L = lifetime of an intelligent & technological civilization (years)

Caveats...

- The Drake Equation is an estimate and not a true scientific derivation
- Call it "back of the envelope" or "handwaving"
- There is much incertainty in the various factors in the equation!
- (N = 1 to 1,000,000!)
- The general relationship that N~ L implies that:
- Optimism about L implies optimism about N
- Optimism about L implies optimism about SETI
- For us, L ~ 100 years (so far) as a transmitting & receiving species
- The number of civilizations in the galaxy is closely related to:
- (a) how long a technological species survives
- (b) how long any single technological phase lasts
- (c) the duration of technological phases that are compatible with our current search methods

Intelligent Life on Earth

- We know (assume) there is intelligent life here...
- So could we be detected by extraterrestrials?
 - Directly?
 - Images
 - Electromagnetic "leakage" (radio, TV, military, ...)
 - Indirectly?
 - O₂ detected in Earth's atmosphere
 - Pollution/smog in the atmosphere?

Summary

- Life is a difficult thing to define
- But all life on Earth shares similar attributes:
 - (1) A living system must be able to reproduce, to mutate, and to reproduce its mutations
 - (2) A living system must be able to convert external energy sources into useable internal energy sources
- The raw materials for life are common in the Cosmos
- Simple life forms dominate life here; complexity is rare...
- Life exists in extreme environments on Earth
- Enhances prospects for finding life on Mars, Europa, Titan, Enceladus, and other places in our solar system...
- SETI and the search for exoplanets are pushing us farther!

