

Cane toad invasion of Tropical Australia

Cane toad (*Bufo marinus*)
 native to neotropics and
 introduced to Puerto Rico &
 Hawaii where it successfully
 controlled cane beetles
 devastating sugar cane
 crops

 Later introduced to Australia but not successful in reducing beetles and multiplied prolifically reducing biodiversity, especially reptiles

Introduction of the Nile Perch to African Lakes has resulted in the extinction of endemic cichlid fish species

The battle to prevent 'Asian Carp' invading the Great Lakes

Estimated that \$30 million will be spent in 2010 to prevent the invasion

Brown tree snake invasion on Guam

- probably introduced as a ship stowaway in 1940's from South Pacific
- Has devastated forests and eliminated most native vertebrates; has also caused much human trauma because of home invasions

Plant invasions – more than just a nuisance

- 1. What are biological invasions?
- 2. Traits commonly associated with invasion success
- 3. Phenotypic plasticity vs. local adaptation in invaders
- 4. How can we control invaders?

Biological invasions

The successful establishment of a species in a region not previously occupied followed by rapid range expansion

Biological invasions do not always involve harmful species but most do

Changing Perspectives on Invaders

THE
GENETICS
OF
COLONIZING
SPECIES

H. G. Baker and G. Ledyard Stebbins

Invasive Species in a Changing World Harold A. Mooney and Richard J. Hobbs

Terms Used to Describe the Origins of Species

Native

 An indigenous species that occurs wild in a given region

Alien

- A species that has been introduced to a part of the world to which it is not native
- Also referred to as adventive, exotic or simply introduced species

Negative environmental consequences of biological Invasions

- Disrupt ecological processes in natural plant & animal communities
- Displace native species leading to their extinction
- Adverse effects on human health
- Serious economic & social impacts through reduction of yields in agriculture & fisheries

Invasive species in the USA

Economic cost = \$120 billion per year

50,000 introduced species, number rising

 ~ 42% of threatened & endangered species at risk primarily due to alien invasives

Pimentel et al. Ecological Economics (2005)

Questions on invading species

- Why are invading species usually only aggressive in their introduced not their native ranges?
- Are certain ecosystems more susceptible to invasions than others?
- What are the ecological & genetic characteristics of successful invaders?
- Is their evidence for the contemporary evolution of local adaptation in invaders?
- How can invaders be controlled?

Differences in enemy attack in populations of white campion (Silene latifolia) from Europe and North America: an example of the enemy release hypothesis

Lorne Wolfe

Europe

fungal disease
8- | 1-2.92. P-0.004

Geographic range

Sterilizing anther smut fungus

aphids

snails

florivory

American Naturalist (2002)

N. America

• pest and disease pressure was x17 times higher in the native range compared to the alien range and involved both specialist and generalists

Invasive species thrive in disturbed sites: the more disturbance the more vulnerable to invasion

Caused by humans (Amazon forest)

Natural (volcanic eruption)

Forms of Disturbance

Common attributes of successful invasive species

- Rapid development to reproduction
- High reproductive output
- Well-developed dispersal mechanisms
- Broad ecological tolerance
- High phenotypic plasticity*

^{*} The ability of a genotype to alter its phenotype in response to environmental change – important trait in unpredictable environments

Evolution in invasive species of agriculture

- Selection of barnyard grass plants that mimic cultivated rice (SE Asia)
- Selection of herbicide resistant weed species (worldwide)

Weeding practices in rice

Latin America

- weed removal involves the ability to distinguish visually between crop and weed
- weeds that look more like the crop escape detection inadvertently selecting for mimicry

Africa

Find the rice mimic?

Rice mimicry in barnyard grass

Scientific American (1987)

Rapid evolution of herbicide resistant weeds in agriculture

crop duster

Wetland invasions

Purple loosestrife (Lythrum salicaria)

- Aquatic perennial with showy purple flowers native to Europe; used as an ornamental.
- Multiple introductions to eastern North America during past century followed by invasion of wetlands.

Some attributes of purple loosestrife

- Plants competitive with high phenotypic plasticity, produce millions of small, easily dispersed seeds with high viability
- Populations genetically diverse due to multiple introductions, outbreeding and polyploidy; provides opportunities for evolution of local adaptation

Is there evidence for rapid adaptive evolution in invasive populations of Purple Loosestrife?

Flowering time correlated with latitudinal gradient of seasonality

- common garden studies indicate significant genetic differentiation among populations
- variation forms a cline* in time to flowering with northern populations flowering faster than southern populations
- populations farther north have adapted to shorter growing season
- * A gradual change in trait means over a geographical transect

Aquatic plant invasion in the tropics

The world's worst aquatic invaders:

- Water hyacinth (Eichhornia crassipes)
- Kariba weed (Salvinia molesta)

Features in common:

- Native to South America, introduced by humans to Old World tropics, free-floating with prolific clonal propagation, populations genetically uniform and invasiveness due to high phenotypic plasticity NOT genetic diversity
- Herbicide control causes pollution of aquatic habitats so biological control methods used

Kariba weed invading a reservoir in Australia

Kariba weed is a floating fern that is genetically sterile

Management of invasives – methods of control

- mechanical e.g. hand weeding, machines
- chemical herbicides
- ecological e.g. burning, flooding
- biological control

Biological control of invaders

 The planned introduction of natural enemies (e.g. predators, parasites, pathogens) to control unwanted populations of invaders in alien range

Mode of reproduction of plant invaders & likelihood of success from biological control

% of species

- asexual species easier to control than sexual species
- why?
- answer lies in influence of reproductive systems on genetic diversity
- genetic diversity will determine whether resistance evolves

Advantages of biological control

- Non-toxic to humans; if conducted carefully no serious environmental impacts
- If successful the effects are permanent
- Economically cheap (\$1 for biological control vs. \$5 for chemical control)

Danger of biological control

Sloppy science creates new invasion

Today's General Messages

- Biological invasions reduce biodiversity and are a serious financial drain on the global economy
- Understanding why some species are invasive is a key biological question
- Genetic and ecological studies can provide insights for management of invasives

Further Reading

http://islandpress.org/bookstore/details0620.html?prod_id=830