Wild Sun! A Drama in Three Acts

Richard Wolfson Benjamin F. Wissler Professor of Physics Middlebury College

Insight Cruises/Scientific American January 16, 2012

Wild Sun! A Drama in 3 Acts

Act 1: October Storm
Scene 1: At Earth, October 2011
Scene 2: At L1
Scene 3: On the Sun, 2 days earlier

Act 2: A Tale of Two Atmospheres

Act 2: Sun-Earth Connection

Prelude Your relationship with the Sun

Act 1: October Storm Scene 1

At Earth Late October 2011

In the News...

Epic Geomagnetic Storm Erupts Discovery News 10/25/11

Sun Storm Paints the Night Sky *Washington Post* 10/26/11

Northern Lights Seen Across Southeast US ABC News 10/25/11

Unusual Northern Lights Set Southern Skies Afire *Roanoke Times*10/26/11

Watch Out Mars! spaceweather.com 10/22/11

> Solar Flare Illuminates the Grid's Vulnerability *New York* Times 6/9/11

At Earth, October 24, 2011

http://spaceweather.com/aurora/gallery_01oct11.htm

View From Over the Pole

Auroral oval from NOAA-15 satellite

October 25, 2011

Energy deposition, erg/cm²/s

Act 1 Scene 2

At L1 (Late October 2011)

What's L1?

Quick Quiz: What's L1?

- a) A stable point 60° ahead of Earth in the same orbit
- b) A point directly behind the Moon
- c) A point where Earth's and Sun's gravitational forces cancel
- d) None of the above

What's L1?

Quick Quiz: What's L1?

- a) A stable point 60° ahead of Earth in the same orbit
- b) A point directly behind the Moon
- c) A point where Earth's and Sun's gravitational forces cancel
- d) None of the above

The L1 Lagrange Point

- Point where Earth's and Sun's gravity combine to give 1-year orbital period
- Located ~1 million miles sunward of Earth
- Spacecraft at L1 orbit Sun in "lockstep" with Earth
- Sun always in view

At L1

ACE (Advanced Composition Explorer) solar wind data, late October 2011

Day of Year: 295 = October 22, 2011

Graph constructed from http://www.srl.caltech.edu/ACE/ASC/browse/view_browse_data.html

Act 1 Scene 3

Back at the Sun ~2 days earlier

Back at the Sun: October 22, 2011

STEREO COR2 coronagraph

SOHO C2 coronagraph 2011/10/22 11:24

Back at the Sun: October 21-22, 2011

Coronal mass ejection viewed from STEREO ahead spacecraft

http://sohowww.nascom.nasa.gov/pickoftheweek/old/28oct2011/

Interlude: Our Eyes on the Sun

Solar eclipse observations

06 rovide 3D imaging

Act 2: A Tale of Two Atmospheres

Coronal Mass Ejections: The Big Solar Storms Most energetic events in our Solar System $\bullet \sim 10$ trillion nuclear bombs Eject 10 trillion tons of solar material into space ◆~mass of a mountain Speeds up to 1000 miles/second

What Drives CMEs? Magnetic Energy

SDO AIA 171 October 21, 2011

Building Up Magnetic Energy

Response of the magnetic field to the Sun's differential rotation

Simulating a Solar Storm

Simulation by Ben Lynch, Space Sciences Lab, UC Berkeley: http://sprg.ssl.berkeley.edu/~blynch/

Seasons on the Sun: The Solar Cycle

Seasons on the Sun: The Solar Cycle

Act 3: Sun-Earth Connection

A Short Physics Lesson: Charged Particles and Magnetic Fields

- Charged particles move easily *along* magnetic fields
- It's difficult for them to move *perpendicular* to magnetic fields
- Consequence: they trace out spiral paths in magnetic fields

A Short Physics Lesson: Charged Particles and Magnetic Fields

- Charged particles move easily *along* magnetic fields
- It's difficult for them to move *perpendicular* to magnetic fields
- Consequence: they trace out spiral paths in magnetic fields

Earth's Magnetic Field

Simple view: Earth in isolation

Earth's Magnetic Field

More complex: Interaction with the solar wind

Polar cusp

Bow Shock

Magnetosphere

Solar wind

Polar cusp

Auroras

- Result from high-energy solar particles penetrating the polar cusps
- Particles excite oxygen & nitrogen atoms in upper atmosphere
 - Atoms de-excite, emitting light
- Particles "mirror" back and forth between northern and southern hemispheres

Another Physics Lesson

Changing magnetic fields induce electric currents

 Basis of electric generators
 Basis of geomagnetic storms

Tue, 20 April, 2010

Orbital Blames Galaxy 15 Failure on Solar Storm

Simulating a CME: Sun to Earth

Aurora over Ann Arbor, MI October 29, 2003

Another Strong Magnetic Storm Pummels Earth

http://helios.astro.lsa.umich.edu/~kristin/aurora2

Los Angeles Times 10/31/03

Flare Damages Mars Odyssey Probe BBC News 11/28/03

Courtesy of Ward Manchester, University of Michigan

The Sun and Climate

- Connection usually overblown!
- Weak solar-cycle signal present in climate records
- Total solar luminosity variation over solar cycle: ~ 1 W/m²; ~0.1%
- Resulting temperature variation: ~several hundredths of a degree
 BUT:
 - ◆ UV variation much greater
 - Forcing change in rising cycle comparable to CO₂ increase

Longer Term Effects? (~30 years)

 $\begin{array}{c} 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ -0.1 \\ 1980 \\ 1990 \\ 2000 \\ 2010 \\ 2010 \end{array}$

Global temperature, °C (deviation from 1961-1990 average) Climatic Research Unit, UEA

Proxy-based millennial temperature reconstructions

Final Scene: Sun and Earth

