Wild Sun! A Drama in Three Acts

Richard Wolfson
Benjamin F. Wissler Professor of Physics Middlebury College

Insight Cruises/Scientific American
January 16, 2012

Wild Sun! A Drama in 3 Acts

- Act 1: October Storm
- Scene 1: At Earth, October 2011
- Scene 2: At L1
- Scene 3: On the Sun, 2 days earlier
- Act 2: A Tale of Two Atmospheres
- Act 2: Sun-Earth Connection

Prelude

Your relationship with the Sun

Act 1: October Storm Scene 1

At Earth

Late October 2011

In the News...

Epic Geomagnetic Storm Erupts Discovery News 10/25/11

Sun Storm Paints the Night Sky Washington Post 10/26/11

Northern Lights Seen Across Southeast US ABC News 10/25/11

Unusual Northern Lights Set Southern Skies Afire Roanoke Times10/26/11

Watch Out Mars! spaceweather.com 10/22/11

Solar Flare Illuminates the Grid's Vulnerability New York Times 6/9/11

At Earth, October 24, 2011

View From Over the Pole

Auroral oval from NOAA-15 satellite
October 25, 2011

Act 1
 Scene 2

At L1
(Late October 2011)

What's L1?

Quick Quiz: What's L1?
a) A stable point 60° ahead of Earth in the same orbit
b) A point directly behind the Moon
c) A point where Earth's and Sun's gravitational forces cancel
d) None of the above

What's L1?

Quick Quiz: What's L1?
a) A stable point 60° ahead of Earth in the same orbit
b) A point directly behind the Moon
c) A point where Earth's and Sun's gravitational forces cancel
d) None of the above

The L1 Lagrange Point

- Point where Earth's and Sun's gravity combine to give 1-year orbital period
- Located ~ 1 million miles sunward of Earth
- Spacecraft at L1 orbit Sun in "lockstep" with Earth
- Sun always in view

At L1

ACE (Advanced

Composition Explorer) solar wind data, late October 2011

Day of Year: 295 = October 22, 2011

Act 1 Scene 3

Back at the Sun ~2 days earlier

Back at the Sun: October 22, 2011

SOHO C2 coronagraph

Back at the Sun: October 21-22, 2011

Coronal mass ejection viewed from STEREO ahead spacecraft

Interlude:

Our Eyes on the Sun

Ground-based solar telescopes

Hinode (Sunrise) 2006

Solar Bunamias Ohsfreffery

06
rovide 3D imaging

Act 2:
 A Tale of Two Atmospheres

Two Atmospheres

Earth

- Thin (~ 100 miles)

Sun (corona)

- Extended (beyond Pluto)

)t (~ 2 million kelvin) ffuse indy irge storms ectrical conductor agnetism dominant

Coronal Mass Ejections: The Big Solar Storms

- Most energetic events in our Solar System -~10 trillion nuclear bombs

- Eject 10 trillion tons of solar material into space - ~mass of a mountain

- Speeds up to 1000 miles/second

What Drives CMEs? Magnetic Energy

Building Up Magnetic Energy

Response of the magnetic field to the Sun's differential rotation

Simulating a Solar Storm

Simulation by Ben Lynch, Space Sciences Lab, UC Berkeley: http://sprg.ssl.berkeley.edu/~blynch/

Seasons on the Sun: The Solar Cycle

Seasons on the Sun: The Solar Cycle

Act 3:
 Sun-Earth Connection

A Short Physics Lesson:
 Charged Particles and Magnetic Fields

- Charged particles move easily along magnetic fields
- It's difficult for them to move perpendicular to magnetic fields
- Consequence: they trace out spiral paths in
 magnetic fields

A Short Physics Lesson:

Charged Particles and Magnetic Fields

- Charged particles move easily along magnetic fields
- It's difficult for them to move perpendicular to magnetic fields
- Consequence: they trace out spiral paths in magnetic fields

Earth's Magnetic Field

Simple view: Earth in isolation

Earth's Magnetic Field

More complex: Interaction with the solar wind

Auroras

- Result from high-energy solar particles penetrating the polar cusps
- Particles excite oxygen \& nitrogen atoms in upper atmosphere
- Atoms de-excite, emitting light
- Particles "mirror" back and forth between northern and southern hemispheres

Another Physics Lesson

- Changing magnetic fields induce electric currents
Δ Basis of electric generators
- Basis of geomagnetic storms

Salar activity domaand Marg

Tue, 20 April, 2010
Orbital Blames Galaxy 15 Failure on Solar Storm

Simulating a CME: Sun to Earth

Aurora over Ann

Arbor, MI
October 29, 2003

原

http://helios.astro.lsa.umich.edu/~kristin/aurora2
Another Strong Magnetic Storm Pummels Earth
Los Angeles Times 10/31/03

Flare Damages Mars
Odyssey Probe
BBC News 11/28/03

University of Mithigan
Manchester et, at.
2885

Courtesy of Ward Manchester, University of Michigan

The Sun and Climate

- Connection usually overblown!
- Weak solar-cycle signal present in

climate records
- Total solar luminosity variation over solar cycle: $\sim 1 \mathrm{~W} / \mathrm{m}^{2} ; \sim 0.1 \%$
- Resulting temperature variation:

Zurich sunspot numbers ~several hundredths of a degree

- BUT:
- UV variation much greater
- Forcing change in rising cycle comparable to CO_{2} increase

11-year Fourier component Wolfson \& Hand SVECSE 2008

Longer Term Effects? (~ 30 years)

Global temperature, ${ }^{\circ} \mathrm{C}$ (deviation from 1961-1990 average)

Climatic Research Unit, UEA

Millennial effects?

Proxy-based millennial temperature reconstructions

Final Scene: Sun and Earth

Not this...

