Zooming in on the Stars with the CHARA Array

GeorgaState University

Why We Build Larger \& Larger Telescopes I. Light Gathering Power

- Light Gathering Power goes as the area of the light collecting mirror thus LGP is proportional to aperture ${ }^{2}$
- Eg. The 200-inch Hale telescope has a million times the LGP of the human eye.

The proposed "Thirty Meter Telescope" will have 36 times the LGP of the Hale Telescope

Why We Build Larger \& Larger felescopes II. Angular Resolution

 telescope mirror. So, if you want to esone hial wels clearly, you need to double the size of your telescope- Okay, so whytot loyk at spots Yn nearby stars like the sun?

The sun seen from a distance of 20 parsecs has angu dia, ter d. hout 0.0905 arcseconds (That's about the size of a bto fi rt 0, 2 l il as ay!)

Nelog déang jus thilan elescope 10 times larger than the TMT!!!
¢ d d

Not Enough \$\$ - Then just cheat!

300 meters
\bigcirc
o

Mount Wilson Observatory

Angeles National Forest, Los Angeles County, California, Elev. 5712 ft

A "Simple" Long-Baseline Interferometer

 Delay Compensator Must Match Paths to Within 1 micron

The Actual Layout of the CHARA Array

CHARA Overview

- Y-shaped Array Configuration
- 15 baselines from 31 to 331 meters
- World's longest baselines => world' s highest resolution
- Six 1.0-meter Collecting Telescopes
- Can accommodate 2 more telescopes
- Adaptive optics retrofit currently being pursued
- Dual Operating Wavelength Regimes
- Visible (470-800 nm => 0.15 mas limiting resolution)
- Near infrared (2.0-2.5 microns => 0.6 mas limiting resolution)
- Science Emphasis on Fundamental Stellar Parameters
- Sizes, shapes, distances, temperatures, masses \& luminosities
- Located on Historic Mount Wilson, California
- Ground broken 1996
- First fringes 1999
- Routine operations initiated 2005
- First optical imaging 2007
- 50 refereed science papers since July 2005

Telescope Enclosures In Their Opened and Closed Configurations

Telescope Optics

Nils Turner prepping one of the 1-meter telescope primary mirrors for recoating in the 100 -inch telescope vacuum chamber.

Vacuum Light Tubes I.

Feed Light from Each Telescope to the Central Lab

Vacuum Light Tubes II.

Tubes from the Three Arms of the Array

Vacuum Turning Boxes

Make 6 Lines Parallel while Preserving Polarizations

OPLE Carts

Catseye Optical System in a Nested Servo Provide ~10nm Correction

voice coil
linkage

OPLE Carts

Provide Continuously Variable Path Length Compensation

Beam Management Subsystems

 Separate Visible from Infrared and "Massage" Light Beams

Beam Combining Tables

Accommodate five beam combiners, and tip/tilt, alignment, and fringe tracking subsystems

Control/Office Bldg \& Exhibit Hall

Remotely Operable From Atlanta and also by members of the CHARA Collaboration in Paris, Nice, Sydney and Ann Arbor

Control GUI＇s－There are 5
 more screens of these things

TriE 3．6	F1 Run the auto list F2 Background control menu
Current menu：MAIN	F3 Socket control menu
Previous menu：None Menu Depth ：	F4 F5 Standard control menu Utilities Henu
	F6 Ople control menu
〈？〉 Help	F7 Astromod control menu
〈BACKSPACE〉 Previous menu	${ }^{\text {F8 }}$ RPC control menu
〈＾〉 MAIN menu	F9 Quit system

〈EACKSPACE〉 $\rangle\rangle$ Mrevious menu MAIN menu	F8 Serial control F9 Shutter control menu F10 Quit system
TITO HCAL LIEAT IN IEIECTOR	

Q WOBBLE CONTROL W1 ON MOD X MOD Y SEND S2 $\widehat{O N}$ MOD X MOD Y \mid SEND

Data recording started for S2 file／ople／data／II 13\％00 S2 006，dat．

－IRIMAG	？${ }^{\text {® }}$	O OPLE	（3）	［ Wob	BLE	［	図䍖
SET DISPLAY		OPEN SOCKET		SET DISPLAY			ODS
OTS	ODS	CLOSE SOCKET		BDISP			IISP
FILTER	NIRO	ALL OFF	OPLESYNC	REFERENCE DISPLAY			
DITHER	SCAN	START ASTROMOD		SIGON		SIGOFF	
LINEAR	TRACK	STOP ASTROMOD		SAMPLE PERIOD			
STATUS	GET DATA	Ref： 0		TUNE ATUNE			MAX
PS FILT	PS UNFILT	S1		Status		CONTROL	
CHARA	FLUOR	OFFSET SCAN DATA		CLOCK		LPT	
CLOCK	LPT	STATUS	CONTROL	REMOTE DISPLAY			
REMOTE DISPLAY		CLOCK	LPT	PING		REOPEN	
PING	REOPEN	PING	REOPEN	QUIT			
QUIT		Quit					

[^0]
Visibility Amplitude of Single \& Binary Stars

 The basic observable quantity of an interferometer$\mathbf{V}^{2}(\mathbf{b})=(1+\beta)^{-2}\left\{\beta^{2} \mathbf{V}_{1}{ }^{2}(\mathbf{b})+\mathbf{V}_{2}{ }^{2}(\mathbf{b})+2 \beta \mathbf{V}_{1}(\mathbf{b}) \mathbf{V}_{2}(\mathbf{b}) \cos \left[2 \pi \mathbf{b} \lambda^{-1} \rho \cos \psi\right]\right\}$
where:
b = projected baseline length,
$\beta=10^{0.4 \Delta \mathrm{~m}}$,
$\lambda=$ wavelength of observed bandpass,

$\rho=$ angular separation of the binary,
$\psi=$ projection angle of binary star vector onto baseline vector,
$\mathrm{V}_{1,2}$ are the visibilities arising from the component angular diameters $\Theta_{1,2}$ where $V_{1,2}(b)=2\left[J_{1}\left(\pi \Theta_{1,2} b / \lambda\right)\right] /\left(\pi \Theta_{1,2} \mathbf{b} / \lambda\right)$

Measuring a Star's Diameter

The visibility arising from the angular diameter of each component is:

$$
V(b)=2\left[J_{1}(\pi \Theta b / \lambda)\right] /(\pi \Theta b / \lambda)
$$

where Θ is the angular diameter (in radians), b is the baseline, and λ is the effective wavelength of the observed spectral pass band. J_{1} is the first order Bessel function.

Before we do such fits, we must derive actual visibilities from what we measure with an interferometer. This involves a straightforward calibration process using other stars.

Effect of Increasing Angular Diameter θ

$\theta=5.0 \mathrm{mas}$

Baseline (meters)

An Example Angular Diameter Fit A smallish star - GJ 752A (Ross 652)

An Example Angular Diameter Fit A largish star - Procyon (α Canis Minoris)

An Interferometric HR Diagram

Rapidly Rotating Stars

α Leonis and α Lyrae

Regulus Visibilities \& Diameter Fit

Regulus clearly isn't round

Regulus \& the Sun

CHARA's First Refereeed Science Paper

Vega - A Pole-on Rapid Rotator

Pole-on view (as seen from Earth)

Equator-on view

The Sun

surface
temperature:
$10,000^{\circ} \mathrm{F}$
rotation period: 24 to 30 days

Imaging α Aquilae (Altair)

The Rapid Rotator Altair

The first image ever made of another sunlike star

CHARA INTERFEROMETER: LARGEST INFRARED TELESCOPE IN THE WORLD

The Rapid Rotator Altair

The first image ever made of another sunlike star

The Rapid Rotator Altair

The first image ever made of another sunlike star

Model of a fast-spinning star

0.1 revolutions/day

Comparison of Image with Standard Model

- Altair (Alp Aql, V=0.7)
- Nearby hot star ($\mathrm{d}=5.1 \mathrm{pc}$, Spectral Type A7V, T = 7850 K)
- Rapidly rotating (v sin i = 240 km/s, ~90\% breakup)
- 22\% longer in one dimension than other (Van Belle et al. 2001)
- Equator is $\sim 1600 \mathrm{~K}$ cooler and $\sim 35 \%$ less bright than pole)
- Ideal test of Von Zeipel Theory of gravity darkening
- Assumptions: solid body rotation, point gravity
- Centrifugal distortion will cause oblateness
- Equatorial "gravity darkening": hot pole looks like bright spot
- Equatorial gravity darkening we see is greater than predicted by this theory

Red Giants in the Hyades

625 Myr isochrones with slightly varying heavy element abundances for existing and new results for Hyades giants.

CHARA values show the stars sitting pretty on the "Red Giant Clump."

δ Cephei - Prototype of the Classical Cepheids

δ Cephei - P Factor Determination

Mérand et al. A\&A 2005

The angular diameter with phase is shown following the adjustment of the p factor in order to follow the radial velocity fit (solid line).
$\Theta_{\text {mean }}=1.475 \pm 0.004$ mas corresponding to $R_{\text {star }}=43.3 \pm 1.7 R_{\text {sun }}$

The Exoplanet Orbiting HD 189733 I.
 A "Hot Jupiter"

This planet orbits once every 2.2 days with an orbital plane that is nearly in our line of sight.

Thus, the planet transits the star and produces a small decline in the star's brightness equivalent to an eclipsing binary star system.

By measuring the size of the star, we get the size of the planet.

The Exoplanet Orbiting HD 189733 II.

Baines et al. ApJ 2007.

Ellyn Baines found an angular diameter for the star of 0.00038 arc seconds, one of the smallest yet measured.

This means the planet, which was known to be about 17% the diameter of the star, is about 20\% larger than Jupiter.

The planet has a density of about $0.75 \mathrm{gm} / \mathrm{cm}^{3}$, similar to Saturn.

This is the first direct measurement of the diameter of an exoplanet

The HR 8799 Exoplanet System

Hot Stars With Disk

The "Be" Stars γ Cas and ζ Tau

Be Star Properties

- Rapidly rotating B-type stars that eject gas into a circumstellar disk
- Evidence for disks observed in Ha emission lines, IR excess flux, linear polarization
- Variable on timescales of days to decades

Disks Around "Be" Stars

Geometric Models of ζ Tauri

- Major Axis ~ 1.8 mas in radius
- On average, the central star contributes ~half the infrared light
- Apparent change in position angle of the major axis of $10-15^{\circ}$

ζ Tauri Disk Appears to be Precessing!

HD 157482 (V819 Her)

A Hierarchical Triple System

"Separated" Fringe Packets

Original Fringe Fit

Mutual Inclination

- Mutual inclination is the angle between planes of the wide orbit and the close orbit

$$
\begin{aligned}
\cos \phi & =\cos i_{\text {Close }} \cos i_{\text {Wide }}+\sin i_{\text {Close }} \sin i_{\text {Wide }} \cos \left(\Omega_{\text {Wide }}-\Omega_{\text {Close }}\right) \\
& =33.5^{\circ} \pm 5.5^{\circ}
\end{aligned}
$$

- This suggests a very energetic formation process within a highly oblate gas cloud.

Resolved Spectroscopic Binary

σ Coronae Borealis

CHARA/MIRC Imaging Demonstration

 10.2-day Spectroscopic Binary ıPeg

Predicted orientation and diameters are shown offset from the image of the binary star.

β Lyrae - B7 V + A8 V w/ P = 12.0 days Prototype Mass Transfer Eclipsing/Spectroscopic Binary

β Lyrae - First Images Ever of an Eclipsing Binary

5 Jul 2007

7 Jul 2007

Four images are consistent with model and show hints of mass exchange.

12 Jul 2007

β Lyrae - A Simulation Dave McCarty, Coca Cola Space Science Center

β Lyrae - The Movie! From CHARA/MIRC Imagery

ε Aurigae - Imaging the Eclipse

 New imagery appeared in Nature Letters, April 8, 2010

2010 Aug 20

CHARA Research Sponsored by

National Science Foundation
GSU College of Arts \& Sciences
W.M. Keck Foundation

Visit Us on the Internet at

GSU Astronomy Program www.chara.gsu.edu The CHARA Array www.chara.gsu.edu/CHARA/

Mount Wilson Observatory www.mtwilson.edu

[^0]: Julday： 52823.234398 gmt： 053732 lst： 4.313896162840 .322

