Zooming in on the Stars with the CHARA Array

H.A. McAlister March 10, 2011 Cosmic Trails #2 on Board the Nieuw Amsterdam

Why We Build Larger & Larger Telescopes I. Light Gathering Power

- Light Gathering Power goes as the area of the light collecting mirror thus LGP is proportional to aperture²
- Eg. The 200-inch Hale telescope has a million times the LGP of the human eye.

The proposed "Thirty Meter Telescope" will have 36 times the LGP of the Hale Telescope

Mount Wilson Observatory

Angeles National Forest, Los Angeles County, California, Elev. 5712 ft

CHARA Overview

- Y-shaped Array Configuration
 - 15 baselines from 31 to 331 meters
 - World's longest baselines => world's highest resolution
- Six 1.0-meter Collecting Telescopes
 - Can accommodate 2 more telescopes
 - Adaptive optics retrofit currently being pursued
- Dual Operating Wavelength Regimes
 - Visible (470 800 nm => 0.15 mas limiting resolution)
 - Near infrared (2.0 2.5 microns => 0.6 mas limiting resolution)
- Science Emphasis on Fundamental Stellar Parameters
 - Sizes, shapes, distances, temperatures, masses & luminosities
- Located on Historic Mount Wilson, California
 - Ground broken 1996
 - First fringes 1999
 - Routine operations initiated 2005
 - First optical imaging 2007
- 50 refereed science papers since July 2005

Telescope Enclosures In Their Opened and Closed Configurations

Telescope Optics Nils Turner prepping one of the 1-meter telescope primary mirrors for recoating in the 100-inch telescope vacuum chamber.

Vacuum Light Tubes I. Feed Light from Each Telescope to the Central Lab

Vacuum Light Tubes II. Tubes from the Three Arms of the Array

Vacuum Turning Boxes Make 6 Lines Parallel while Preserving Polarizations

OPLE Carts

Catseye Optical System in a Nested Servo Provide ~10 nm Correction

OPLE Carts

Provide Continuously Variable Path Length Compensation

Beam Management Subsystems Separate Visible from Infrared and "Massage" Light Beams

Beam Combining Tables

Accommodate five beam combiners, and tip/tilt, alignment, and fringe tracking subsystems

Control/Office Bldg & Exhibit Hall

Remotely Operable From Atlanta

and also by members of the CHARA Collaboration in Paris, Nice, Sydney and Ann Arbor

Visibility Amplitude of Single & Binary Stars The basic observable quantity of an interferometer

 $V^{2}(b) = (1+\beta)^{-2} \{\beta^{2}V_{1}^{2}(b) + V_{2}^{2}(b) + 2\beta V_{1}(b)V_{2}(b) \cos[2\pi b\lambda^{-1}\rho \cos\psi]\}$

where:

- **b** = **projected baseline length**,
- $\beta = 10^{0.4\Delta m},$

 λ = wavelength of observed bandpass,

 ρ = angular separation of the binary,

- ψ = projection angle of binary star vector onto baseline vector,
- $V_{1,2}$ are the visibilities arising from the component angular diameters $\Theta_{1,2}$ where $V_{1,2}(b) = 2[J_1(\pi\Theta_{1,2}b/\lambda)]/(\pi\Theta_{1,2}b/\lambda)$

Measuring a Star's Diameter

The visibility arising from the angular diameter of each component is:

 $V(b) = 2[J_1(\pi \Theta b/\lambda)]/(\pi \Theta b/\lambda)$

where Θ is the angular diameter (in radians), b is the baseline, and λ is the effective wavelength of the observed spectral pass band. J₁ is the first order Bessel function.

Before we do such fits, we must derive actual visibilities from what we measure with an interferometer. This involves a straightforward calibration process using other stars.

An Example Angular Diameter Fit A largish star – Procyon (α Canis Minoris)

Regulus Visibilities & Diameter Fit *Regulus clearly isn't round*

Regulus & the Sun CHARA's First Refereeed Science Paper

Vega – A Pole-on Rapid Rotator

The Rapid Rotator Altair The first image ever made of another sunlike star

The Rapid Rotator Altair The first image ever made of another sunlike star

The Rapid Rotator Altair *The first image ever made of another sunlike star*

Red Giants in the Hyades

625 Myr isochrones with slightly varying heavy element abundances for existing and new results for Hyades giants.

CHARA values show the stars sitting pretty on the "Red Giant Clump."

δ Cephei – P Factor Determination

Mérand et al. <u>A&A</u> 2005

The angular diameter with phase is shown following the adjustment of the pfactor in order to follow the radial velocity fit (solid line).

 Θ_{mean} = 1.475±0.004 mas corresponding to R_{star} = 43.3±1.7 R_{sun}

The Exoplanet Orbiting HD 189733 I. A "Hot Jupiter"

This planet orbits once every 2.2 days with an orbital plane that is nearly in our line of sight.

Thus, the planet transits the star and produces a small decline in the star's brightness equivalent to an eclipsing binary star system.

By measuring the size of the star, we get the size of the planet.

The Exoplanet Orbiting HD 189733 II. Baines et al. <u>ApJ</u> 2007.

Ellyn Baines found an angular diameter for the star of 0.00038 arc seconds, one of the smallest yet measured.

This means the planet, which was known to be about 17% the diameter of the star, is about 20% larger than Jupiter.

The planet has a density of about 0.75 gm/cm³, similar to Saturn.

This is the first direct measurement of the diameter of an exoplanet

The HR 8799 Exoplanet System

New CHARA observations of the host star's diameter have led to its placement on the HR diagram in a position suggesting that it is much older than thought and that the "planets" may instead be brown dwarfs.

Be Star Properties

- Rapidly rotating B-type stars that eject gas into a circumstellar disk
- Evidence for disks observed in Hα emission lines, IR excess flux, linear polarization
- Variable on timescales of days to decades

Geometric Models of ζ Tauri

- Major Axis ~ 1.8 mas in radius
- On average, the central star contributes ~half the infrared light
- Apparent change in position angle of the major axis of 10-15°

β Lyrae – B7 V + A8 V w/ P = 12.0 days Prototype Mass Transfer Eclipsing/Spectroscopic Binary

β Lyrae – First Images Ever of an Eclipsing Binary

5 Jul 2007

7 **Jul 200**7

9 Jul 2007

Four images are consistent with model and show hints of mass exchange.

Model of Linnell *et al.* 1988

β Lyrae – A Simulation Dave McCarty, Coca Cola Space Science Center

β Lyrae – The Movie! From CHARA/MIRC Imagery

<u>betlyr.mov</u>

ε Aurigae – Imaging the Eclipse New imagery appeared in Nature Letters, April 8, 2010

2010 Aug 20

CHARA Research Sponsored by

National Science Foundation GSU College of Arts & Sciences W.M. Keck Foundation

 \sim

Visit Us on the Internet at

GSU Astronomy Program www.chara.gsu.edu

The CHARA Array www.chara.gsu.edu/CHARA/

Mount Wilson Observatory www.mtwilson.edu

