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computationcomputation

Convergent evolution

Computers and brains face similar problems…
Do they use similar solutions?
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Spam Not spam
= Cyrillic?
= has “!”?
= links?   
= CAPS?   



Family resemblance



Bayes’ rule
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Bayesian inference
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A simple classifier
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log
P(A | x)
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P(B)

= Cyrillic?
= has “!”?
= links?   

= has “Viagra”?   
= has “Science”?   

= CAPS?   

xk P(xk|spam) P(xk|not spam)
high low
high medium
high

medium low
medium

medium low

low medium



Coevolution

remove spam
features

add non-spam
features



Categorization

cat ⇔ small ∧ furry ∧ domestic ∧ carnivore



Posner & Keele (1968)

Prototype



Family resemblance



Family resemblance

Prototype



Prototypes with features….

Prototype
e.g., binary vector with most
frequent feature values
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Bayes and prototypes
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P(A|x) > P(B|x) if and only if…



Spam filters and classification

• A statistical analysis of the problem of
classification yields a simple solution
– weighted combination of features, with a threshold

for final classification
• This solution is consistent with a theory of

human category learning: prototypes

• Current research uses more sophisticated
strategies to solve this problem, which also
have analogues in human cognition
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Retrieving facts



Bayes for search

• Data d are the terms of the query
• Hypotheses h are candidate webpages

• Assume likelihood P(d|h) is constant for all
webpages containing query, and 0 otherwise
– posterior probabilities of matching webpages

depend only on the prior…

• What prior P(h) should we use?



Using link information

webpages
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How Google works
(in 1998)

• Use p to denote the vector of importances of
each of n webpages (one entry per webpage)

• Use L to denote the “link matrix”, where Lij = 1
if a link exists from j to i and 0 otherwise

• How should we define importance?
– one option: number of pages linking to a page

! 

p = L1

! 

p j = Lij
i

"



How Google works
(in 1998)

• A link from an important page should be worth
more than a link from a less important page

• A link from a page making few links should be
worth more than one making lots of links

• “PageRank” algorithm defines importance as

! 

p =Mp where

! 

Mij =
1

Lkj
k

"



An analogy…

• One model of knowledge: a semantic network

• Similar statistical properties to the web
– short paths, power-law distributions, clustering

• Can we connect search to memory?



 PLANET
Cue:

(Nelson, McEvoy & Schreiber, 1998)

Word association



EARTH
PLUTO

JUPITER
NEPTUNE

VENUS
URANUS
SATURN
COMET
MARS

ASTEROID

 PLANET
Cue:

Associates:

(Nelson, McEvoy & Schreiber, 1998)

Word association
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0 1 0 0 1 0 1 1 …



Word association

nwords = 5,000+



An experiment

• Name the first word that comes into your head
beginning with the letter D

• Parallels web search… retrieve a set of words
(webpages) that match a letter (query)

• Look at ranks of responses under
– PageRank of words within word association network
– number of times word appears as an associate
– overall word frequency



An experiment



How Google works
(on April 1, 2002)



Search and memory

• Human memory and internet search share the
problem of retrieving one fact among many

• Under one view of knowledge (semantic
networks) the organization of facts is similar

• A simple definition of “importance” works well
in both cases…

• Similar correspondences exist for more
complex kinds of search (semantic similarity)
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Inferring preferences

?



Collaborative filtering

0 1 0 0 1 0 1 1 …
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Approaches to collaborative filtering

• Simple: compute correlation between users,
and use a weighted average of purchases
– typically divide by item frequency first

• Fast: compute correlation between items
– can be done quickly when users have few items

• Most expressive: dimensionality reduction
– make inferences about users and items



Matrix factorization
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Mixed multinomiaI logit model
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Developing understanding of choice

(Kushnir, Xu & Wellman, 2008)



Relating choice and preference

• Assume choices follow the MML model

• Children infer utilities by applying Bayes’ rule
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Developing understanding of choice

(Lucas, Griffiths, Xu & Fawcett, in press)



Inferring preferences

• Collaborative filtering predicts what you will
like by using knowledge of what others like

• Different strategies exist, varying in the kinds
of information they produce and their runtime

• Even young children are capable of making
inferences about preferences, and do so in a
way that is consistent with statistical inference



Conclusion

• Brains and computers face similar problems
– an opportunity for convergent evolution

• We can find connections between the
solutions employed by the these systems

• By exploring these connections, we can begin
to think about how to help computers solve
problems that are currently solved by humans
– e.g., language learning, causal learning, science





Connecting cultural and
biological evolution

Tom Griffiths
Department of Psychology
Cognitive Science Program

University of California, Berkeley



Evolution

• Three key ideas:
– variation
– heritable
– differential reproduction

• Evolution is a theory that
naturally lends itself to
mathematics…

Charles Darwin



Replicator dynamics

! 

dxi

dt
= qij f j

j

" x j #$xi

rate of change of
proportion of type i

probability type i
parent has type j child

fitness of type i

mutation selection

(no drift due to infinite population)



Genetic drift



Replicator dynamics

individuals
at time t

individuals
at time t +1



Replicator dynamics

i

individuals
at time t

individuals
at time t +1
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biological

fitness 



Replicator dynamics
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Replicator dynamics
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Cultural evolution

i
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individuals
at time t
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at time t +1
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cultural
fitness 

cultural
transmission 

qij



Cultural transmission

How does transmission transform information?



Iterated learning
(Kirby, 2001)
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Analyzing iterated learning

PL(h|d): probability of inferring hypothesis h from data d

PP(d|h): probability of generating data d from hypothesis h

PL(h|d)

PP(d|h)

PL(h|d)

PP(d|h)



• Variables x(t+1) independent of history given x(t)

• Converges to a stationary distribution under
easily checked conditions (i.e., if it is ergodic)

x x x x x x x x

Transition matrix
qij=P(x(t+1)=j|x(t)=i)

Markov chains



Analyzing iterated learning

d0 h1 d1 h2PL(h|d) PP(d|h) PL(h|d)
d2 h3

PP(d|h) PL(h|d)

Σd PP(d|h)PL(h|d)
h1 h2Σd PP(d|h)PL(h|d)

h3

A Markov chain on hypotheses

corresponds to qij in
replicator dynamics



Bayesian inference

Reverend Thomas Bayes



Bayes’ theorem

! 

P(h | d) =
P(d | h)P(h)

P(d | " h )P( " h )
" h #H
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Posterior
probability

Likelihood Prior
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Sum over space 
of  hypothesesh: hypothesis
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Iterated Bayesian learning
PL(h|d)

PP(d|h)

PL(h|d)

PP(d|h)
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P
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Assume learners sample from their posterior distribution:



Stationary distributions

• Markov chain on h converges to the prior, P(h)
– the probability of choosing a hypothesis converges

to the prior probability of that hypothesis

• Intuitively,each inference allows the prior to
affect the hypothesis chosen, with the prior
itself being the only distribution not modified

(Griffiths & Kalish, 2005)



Back to the replicator dynamics…

• Replicator dynamics

• “Neutral model” (fj constant)

• Stable equilibrium at first eigenvector of Q,
which is our stationary distribution
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dxi

dt
= qij f j
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" x j #$xi
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dt
= qij
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dx

dt
= (Q " I)x



Analyzing iterated learning

• The outcome of iterated learning is strongly
affected by the inductive biases of the learners
– hypotheses with high prior probability ultimately

appear with high probability in the population
• Establishes a connection between constraints on

learning and cultural universals…
• …and provides formal justification for the idea

that culture reflects the structure of the mind
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Part II: Iterated learning in the lab



Serial reproduction
(Bartlett, 1932)



Iterated function learning

• Each learner sees a set of (x,y) pairs
• Makes predictions of y for new x values
• Predictions are data for the next learner

data hypotheses

(Kalish, Griffiths, & Lewandowsky, 2007)



Function learning experiments

Stimulus

Response
Slider

Feedback

Examine iterated learning with different initial data



    1          2           3          4          5          6          7           8          9
IterationInitial

data



Frequency distributions

• Each learner sees objects receiving two labels
• Produces labels for those objects at test
• First learner: one label {0,1,2,3,4,5}/10 times

data hypotheses

(Reali & Griffiths, in press)

5 x “DUP”

5 x “NEK”
P(“DUP”|          ) = θ

(Vouloumanos, 2008)



Results after one generation
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Results after five generations

Frequency of target label

Bayesian model has a prior favoring regularization:

0        θ         1



Genetic drift



Conclusions
• Cultural transmission can systematically alter

information being transmitted
• The result of iterated learning is strongly

influenced by constraints on learning
• Despite different mechanisms, formal analogies

exist between biological and cultural evolution
– learning = mutation (but is a directed process)
– drift = drift (and can be a useful explanatory tool)




