The beginning and end of our universe

Max Tegmark, MIT
THE COSMIC SMÖRGÅSBORD

- Microwave background
- Galaxy surveys
- Supernovae Ia
- Gravitational lensing
- Big Bang nucleosynthesis
- Galaxy clusters
- Neutral hydrogen tomography
- Lyman α forest
What have we learned?
Summary of Lecture 1

- Afterglow Light Pattern
 - 400,000 yrs.
- Dark Ages
- Development of Galaxies, Planets, etc.
- Dark Energy
 - Accelerated Expansion
- Inflation
- Quantum Fluctuations?
- 1st Stars
 - about 400 million yrs.
- WMAP
- Big Bang Expansion
 - 13.7 billion years
Summary of Lecture 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω_{tot}</td>
<td>1.003 ± 0.010</td>
<td>Total density/critical density</td>
</tr>
<tr>
<td>Ω_{Λ}</td>
<td>0.761 ± 0.017</td>
<td>Dark energy density parameter</td>
</tr>
<tr>
<td>ω_b</td>
<td>0.0222 ± 0.0007</td>
<td>Baryon density</td>
</tr>
<tr>
<td>ω_c</td>
<td>0.1050 ± 0.0041</td>
<td>Cold dark matter density</td>
</tr>
<tr>
<td>ω_{ν}</td>
<td>< 0.010 (95%)</td>
<td>Massive neutrino density</td>
</tr>
<tr>
<td>w</td>
<td>-0.941 ± 0.087</td>
<td>Dark energy equation of state</td>
</tr>
<tr>
<td>A_s</td>
<td>0.690 ± 0.045</td>
<td>Scalar fluctuation amplitude</td>
</tr>
<tr>
<td>r</td>
<td>< 0.30 (95%)</td>
<td>Tensor-to-scalar ratio</td>
</tr>
<tr>
<td>n_s</td>
<td>0.953 ± 0.016</td>
<td>Scalar spectral index</td>
</tr>
<tr>
<td>$n_t + 1$</td>
<td>0.9861 ± 0.0096</td>
<td>Tensor spectral index</td>
</tr>
<tr>
<td>α</td>
<td>-0.040 ± 0.027</td>
<td>Running of spectral index</td>
</tr>
</tbody>
</table>
MORE EVIDENCE:
The fine details of cosmic clumpiness
Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/0302496
\(z = 1000 \)
ΛCDM local universe at $z=2.4$ ($\Lambda=0.7$, $\Omega=0.3$, $h=0.7$)
Constrained within 8000 km/s by the IRAS 1.2 Jy survey
LCDM local universe at $z=0.8$ ($\Lambda=0.7$, $\Omega=0.3$, $h=0.7$)
Constrained within 8000 km/s by the IRAS 1.2 Jy survey
Tegmark & Zaldarriaga, astro-ph/0207047 + updates

- Cosmic Microwave Background
- SDSS galaxies
- Cluster abundance
- Weak lensing
- Lyman Alpha Forest

Current power spectrum $P(k) [(h^{-1} \text{Mpc})^3]$ vs. Wavenumber $k [h/\text{Mpc}]$ vs. Wavelength $\lambda [h^{-1} \text{Mpc}]$
Galaxy power spectrum measurements 1999
(Based on compilation by Michael Vogeley)
Current power spectrum $P(k) \left[(\text{Mpc}^3)^2 \right]$ vs. Wavenumber $k \left[\text{Mpc}^{-1} \right]$.

- SDSS galaxies
- Cluster abundance

Tegmark & Zaldarriaga, astro-ph/0207047 + updates

LSS

Clusters
Current power spectrum $P(k) [\text{[(h^{-1} Mpc)^3]}$

- Cosmic Microwave Background
- SDSS galaxies
- Cluster abundance

Wavelength $\lambda [\text{h^{-1} Mpc}]$

Wavenumber $k [\text{h/Mpc}]$

Tegmark & Zaldarriaga, astro-ph/0207047 + updates
2008:

CMB

LSS

Clusters

Lyα

Current power spectrum $P(k) [(h^{-1} \text{ Mpc})^3]$

Wavelength λ [h$^{-1}$ Mpc]

Wavenumber k [h/Mpc]

- Cosmic Microwave Background
- SDSS galaxies
- Cluster abundance
- Lyman Alpha Forest

Tegmark & Zaldarriaga, astro-ph/0207047 + updates
Lyman Alpha Forest Simulation: Cen et al 2001

You

Quasar

QSO 1422+2301

simulation

\[\text{flux} \]

Max Tegmark
Dept. of Physics, MIT
tegmark@mit.edu
Bright Horizons Cruise
June 1, 2010
Max Tegmark
Dept. of Physics, MIT
tegmark@mit.edu
Bright Horizons Cruise
June 1, 2010

LSS

Clusters

CMB

Cosmic Microwave Background

SDSS galaxies

Cluster abundance

Lyman Alpha Forest

Tegmark & Zaldarriaga, astro-ph/0207047 + updates

Current power spectrum $P(k)$ $[\text{/(h}^{-1}\text{Mpc})^3]$ vs. Wavenumber k $[\text{h/Mpc}]$ vs. Wavelength λ $[\text{h}^{-1}\text{Mpc}]$.
Tegmark & Zaldarriaga, astro-ph/0207047 + updates
Chema movie
GRAVITATIONAL LENSING: A1689 imaged by Hubble ACS, Broadhurst et al 2004
WHAT YOU HAVE:

WHAT YOU SEE:
CMB

LSS

Clusters

Lensing

Lyα

Current power spectrum $P(k) \, [\, (h^{-1} \text{ Mpc})^3]$ vs. Wavenumber $k \, [h/\text{Mpc}]$ vs. Wavelength $\lambda \, [h^{-1} \text{ Mpc}]$.

- Cosmic Microwave Background
- SDSS galaxies
- Cluster abundance
- Weak lensing
- Lyman Alpha Forest

Tegmark & Zaldarriaga, astro-ph/0207047 + updates
Galaxy power spectrum measurements 1999
(Based on compilation by Michael Vogeley)
Max Tegmark
Dept. of Physics, MIT
tegmark@mit.edu
Bright Horizons Cruise
June 1, 2010

Tegmark & Zaldarriaga, astro-ph/0207047 + updates
Measuring cosmological parameters
par movies
Cosmic history parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_{eq}</td>
<td>3057^{+105}_{-102}</td>
<td>Matter-radiation Equality redshift</td>
</tr>
<tr>
<td>z_{rec}</td>
<td>$1090.25^{+0.93}_{-0.91}$</td>
<td>Recombination redshift</td>
</tr>
<tr>
<td>z_{ion}</td>
<td>$11.1^{+2.2}_{-2.7}$</td>
<td>Reionization redshift (abrupt)</td>
</tr>
<tr>
<td>z_{acc}</td>
<td>$0.855^{+0.059}_{-0.059}$</td>
<td>Acceleration redshift</td>
</tr>
<tr>
<td>t_{eq}</td>
<td>$0.0634^{+0.0045}_{-0.0041}$ yr</td>
<td>Matter-radiation Equality time</td>
</tr>
<tr>
<td>t_{rec}</td>
<td>$0.3856^{+0.0040}_{-0.0040}$ yr</td>
<td>Recombination time</td>
</tr>
<tr>
<td>t_{ion}</td>
<td>$0.43^{+0.20}_{-0.10}$ yr</td>
<td>Reionization time</td>
</tr>
<tr>
<td>t_{acc}</td>
<td>$6.74^{+0.25}_{-0.24}$ yr</td>
<td>Acceleration time</td>
</tr>
<tr>
<td>t_{now}</td>
<td>$13.76^{+0.15}_{-0.15}$ yr</td>
<td>Age of Universe now</td>
</tr>
</tbody>
</table>
Using WMAP3 + SDSS LRGs:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter budget parameters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ω_{tot}</td>
<td>$1.003^{+0.010}_{-0.009}$</td>
<td>Total density/critical density</td>
</tr>
<tr>
<td>Ω_{Λ}</td>
<td>$0.761^{+0.017}_{-0.018}$</td>
<td>Dark energy density parameter</td>
</tr>
<tr>
<td>ω_b</td>
<td>$0.0222^{+0.0007}_{-0.0007}$</td>
<td>Baryon density</td>
</tr>
<tr>
<td>ω_c</td>
<td>$0.1050^{+0.0041}_{-0.0040}$</td>
<td>Cold dark matter density</td>
</tr>
<tr>
<td>ω_{ν}</td>
<td>< 0.010 (95%)</td>
<td>Massive neutrino density</td>
</tr>
<tr>
<td>w</td>
<td>$-0.941^{+0.087}_{-0.101}$</td>
<td>Dark energy equation of state</td>
</tr>
<tr>
<td>Seed fluctuation parameters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_s</td>
<td>$0.690^{+0.045}_{-0.044}$</td>
<td>Scalar fluctuation amplitude</td>
</tr>
<tr>
<td>r</td>
<td>< 0.30 (95%)</td>
<td>Tensor-to-scalar ratio</td>
</tr>
<tr>
<td>n_s</td>
<td>$0.953^{+0.016}_{-0.016}$</td>
<td>Scalar spectral index</td>
</tr>
<tr>
<td>$n_t + 1$</td>
<td>$0.9861^{+0.0096}_{-0.0142}$</td>
<td>Tensor spectral index</td>
</tr>
<tr>
<td>α</td>
<td>$-0.040^{+0.027}_{-0.027}$</td>
<td>Running of spectral index</td>
</tr>
</tbody>
</table>
How will it all end?
A decelerating universe reaches its current size in the least amount of time. The universe could eventually contract and collapse into a "big crunch" or expand indefinitely. A coasting universe (center) is older than a decelerating universe because it takes more time to reach its present size, and expands forever. An accelerating universe (right) is older still. The rate of expansion actually increases because of a repulsive force that pushes galaxies apart.
What we’ve learned about $H(z)$ from SN Ia, CMB, BAO, BBN, etc:

Assumes $k=0$

Vanilla rules OK!
How did it all begin?
Some things to ponder…
Ned Wright
How flat is space?

![Graph showing the relationship between dark energy density and matter density. The graph illustrates the allowed region for the flatness of space.]
How flat is space?

Ruled out by WMAP1

Dark energy density Ω_Λ

Matter density Ω_m

Allowed
How flat is space? Somewhat.
How flat is space? \(\Omega_{\text{tot}} = 1.003 \pm 0.010 \)