Astrodynamics: Natural Orbits from Epicycles to Chaos

Kathleen Howell
Purdue University

Celestial Mechanics and Astrodynamics

Formal Astronomy

Phenomena apart from causes:
\rightarrow Divisions of time
\rightarrow Constellations
\rightarrow Planets

Dynamical Astronomy

Physical aspects \rightarrow natural phenomena Fundamental properties \rightarrow force, matter, space, time

240 BC

Ancient Astronomers

Chinese astronomers \rightarrow first confirmed perihelion passage of Halley's comet

Ancient map of the stars - appear as flat

Retrograde motions of Mars during Babylonian times.

The 7 Planets of the Ancients

Celestial Sphere

Aristole (384-322 BC)

Aristole's Universe

- 55 concentric, crystalline spheres
- Rotate at different velocities
- Angular velocity constant for given sphere
- Earth at center

Ahstoftes linforse

Motions of the "Wanderers" - The Planets
 -

-

Epicycles

Planets \rightarrow "Epicycles"
Concentric spheres \rightarrow "Deferents"
Centers of epicycles \rightarrow uniform circular motion
Epicylces \rightarrow own uniform circular motion

0

Play \#1

Heliocentric Theory?

-Relative sizes of Sun, Earth, Moon -Earth rotates in circle

-Parallax - stars far away
-Planetary predictions poor

Earth-Centered!

Hipparchus (190-120 BC)

Ptolemy's Universe

Required refinements:

\rightarrow epicycles on epicycles
\rightarrow center of the epicycle uniform motion about offset point

uniform circular motion" :

1. All motion in the heavens \rightarrow uniform circular
2. Objects in heavens from perfect material \rightarrow cannot change intrinsic properties (e.g. brightness)
3. Earth at center of Universe
4. VERY GOOD predictions
Ideas catalogued by Ptolemy in Book:
"Almagest" (i.e., "The Greatest) 150 AD
"Ptolemaic Universe"

Copernicus: Heliocentric Model

Ptolemaic View of Venus

Earth

Copernicus' Universe

What combination of circles?

Copernican View of Venus

The Heleocentric Explanation

First proposed by Copernicus: ~1505 not published till De Revolutionibus: 1543

Johannes Kepler (1571-1630)

What do paths actually look like?

$a=$ semi-major axis

(a) Dírections recorded
 Mars must be in same fosition

Newton \rightarrow Law of Universal Gravitation

Dynamics of Celestial Bodies

Newton + Two-Body Problem

Gravitational interaction of 2 bodies Planetary motion \rightarrow 2BP

SUBSTANTIAL CHANGE

Pre-Newton: • every orbit \rightarrow combine circles

- correct because it works
- no basis: total solar system motion relies on mutual interactions

With Newton: • each orbit can be exact

- incorporate ALL gravitational bodies $\longrightarrow \mathrm{N}$-Body Problem!

Laplace Universe

where $\mathrm{i}=1,2,3,4,5$ and
Plane

Universe is gigantic and perfect watch!

Problem = Conics + small disturbances

Known

Z
Wonderful Math Tools

Trajectory Design

Combine arcs of 3 shapes: $\left.\begin{array}{l}\text { ellipses } \\ \text { parabolas } \\ \text { hyperkolas }\end{array}\right] \begin{gathered}\text { Different } \\ \text { Energy Levels } \\ \text { 'Stable' }\end{gathered}$
Maneuver

Cassini

Spacecraft

Saturn Arrival
July 1, 2004

Jupiter Swingby
December 30, 2000

First Venus Swingby
April 26, 1998
\qquad
Launch to 1st Venus Swingby
1st Venus Swingby to 2nd Venus Swingby
2nd Venus Swingby to Earth Swingby, Past Jupiter to Saturn

Jupiter Flyby Trajectory

Distance from Sun (AU): 5.27 Heliocentric Velocity (km/s): 19.57

Yet, demands for space vehicles increasingly complex

\rightarrow our understanding of motion in the solar system is actually incomplete

Poincaré (1854-1912)

Dynamical Chaos

Poincaré first glimpsed chaos in the gravitational problem in mid-1880's

Contest: Solve for motion of N Bodies

Poincaré did not solve (not even $\mathrm{N}=3$)
Prize for understanding + many new ideas
Three-volume memoir

- foundation for several branches of math
- new approach

New era in celestial mechanics
Poincaré as visionary: sensitive dependence on initial conditions

Deterministic Chaos

Contradiction in terms? Wild, unpredictable behavior?

Dynamical systems theory and chaos
\rightarrow long-term behavior typically quite complicated

Properties:

1. Sensitive to initial conditions Minor changes cause huge fluctuations
2. Many frequencies are excited
3. Periodic orbits must be dense System appears unpredictable
4. Behavior must be locally unstable; global stability

Goal: fixed points periodic points attractive

Both can be

Earth-Moon Distance: 384,000 km

Earth Scale: 3x
Moon Scale: 5x

Mathematics

Celestial Mechanics

Stellar Dynamics

Mathematicians interested forever
Renewed interest: celestial mechanics and stellar dynamics

Few bodies \longmapsto Computers \longleftrightarrow Statistical Compute each orbit

Astrodynamics: N-Body Problem

Where are we?

- Simplest system can have both regular and chaotic behavior
-Laplace Universe - gigantic and perfect watch - has disappeared
-Poincaré - Dynamical Systems + ‘chaos’
-Opened new opportunities
- Examples of natural motion modeled in terms of multiple bodies

Astrodynamics: N-Body Problem

Where are we?

-Simplest system can have both regular and chaotic behavior
-Laplace Universe - gigantic and perfect watch - has disappeared
-Poincaré - Dynamical Systems + ‘chaos’
-Opened new opportunities

- Examples of natural motion modeled in terms of multiple bodies
- Examples of natural motion for man-made vehicles and better understanding of Earth as well as our solar system

Genesis Trajectory Design

Astrodynamics: N-Body Problem

Where are we?

-Simplest system can have both regular and chaotic behavior
-Laplace Universe - gigantic and perfect watch - has disappeared
-Poincaré - Dynamical Systems + 'chaos'
-Opened new opportunities

- Examples of natural motion modeled in terms of multiple bodies
- Examples of natural motion for man-made vehicles and better understanding of Earth as well as our solar system

Phenomena that affects Earth

Artemis

Physics of Northern Lights to Lunar Wake

Artemis P1 /P2 Baseline Trajectory

Astrodynamics: N-Body Problem

Where are we?

-Simplest system can have both regular and chaotic behavior
-Laplace Universe - gigantic and perfect watch - has disappeared
-Poincaré - Dynamical Systems + ‘chaos’
-Opened new opportunities

- Examples of natural motion modeled in terms of multiple bodies
- Examples of natural motion for man-made vehicles and better understanding of Earth as well as our solar system

Knowledge of our Earth

+ solar system

Multple fly-by trajectories are shown near Enceladus
in the Saturnian system

Titan 66 Flyby

A Long Look at Titan

Enceladus Flyby

Jan. 28, 2010

The Plume's the Thing

Astrodynamics: N-Body Problem

- Poincaré: "real aim of celestial mechanics is not to calculate the ephemerides but to recognize if Newton's law is sufficient to explain the phenomena"
- You can agree or not \rightarrow But, although land spectacularly on Titan \rightarrow still cannot foresee if one of a thousand
 asteroids will someday end up hitting the Earth!

Titan Ballute
Terrestrial Planet Finder

Space Tourism and Hotels

EFICE TOUREM EG VEU WANT TE EEP

JOHN SPENCER WITM KAREN L RUEC

