Astrodynamics: Natural Orbits from Epicycles to Chaos

Kathleen Howell Purdue University

Celestial Mechanics and Astrodynamics

Formal Astronomy

Phenomena apart from causes:

- \rightarrow Divisions of time
- \rightarrow Constellations
- \rightarrow Planets

Dynamical Astronomy

Physical aspects → natural phenomena Fundamental properties → force, matter, space, time

Ancient Astronomers

240 BC Chinese astronomers → first confirmed perihelion passage of Halley's comet

> Ancient map of the stars – appear as flat screen circling world

Retrograde motions of Mars during Babylonian times.

The 7 Planets of the Ancients

Imaginary sphere

- Arbitrarily large radius
- Concentric with Earth
- Rotates upon the same axis
- All objects projected upon celestial sphere

Celestial Sphere

Aristole (384-322 BC)

Aristole's Universe

- 55 concentric, crystalline spheres
- Rotate at different velocities
- Angular velocity constant for given sphere
- Earth at center

Aristotie's Universe

Motions of the "Wanderers" – The Planets

Planets → "Epicycles"
Concentric spheres → "Deferents"
Centers of epicycles → uniform circular motion
Epicylces → own uniform circular motion

#1

Play #1

Heliocentric Theory?

The choorth in the drauserou touches brawer us atty ho uspoor un 3 oya de losoy of woo authe hor tance woo attree.

•Relative sizes of Sun, Earth, Moon •Earth rotates in circle

•Parallax – stars far away

•Planetary predictions poor

Earth-Centered!

Hipparchus

(190-120 BC)

Ptolemy's Universe

Claudius Ptolemy (100-170)

"uniform circular motion" :

- 1. All motion in the heavens \rightarrow uniform circular
- 2. Objects in heavens from perfect material →cannot change intrinsic properties (e.g. brightness)
- 3. Earth at center of Universe
- 4. VERY GOOD predictions

Ideas catalogued by Ptolemy in Book: "Almagest" (i.e., "The Greatest) 150 AD

"Ptolemaic Universe"

Copernicus: Heliocentric Model

Copernicus (1473-1543)

Earth not fit to be center; Sun divine Equant: betrayed concept of circles

Sun + Epicycles \rightarrow no equant

Copernicus' Model: No better results than Ptolemy Basic Info: Sun at center Stars far away Earth rotates on axis Earth rotates about Sun Simple Orbits

Still Required 48 epicycles!!

The Heleocentric Explanation

not published till *De Revolutionibus:* 1543

Johannes Kepler (1571-1630)

SUBSTANTIAL CHANGE

Pre-Newton: • every orbit \rightarrow combine circles

- correct because it works
- no basis: total solar system motion relies on mutual interactions

With Newton: • each orbit can be exact

incorporate ALL gravitational bodies > N-Body Problem!

Universe is gigantic and perfect watch!

Problem = Conics + small disturbances Known
Wonderful Math Tools

Voyager 1 Jupiter Flyby 1979

Europa

Callisto

Voyager 1 Thebe

Ganymede

Jupiter Flyby Trajectory

Distance from Sun (AU): 5.27 Heliocentric Velocity (km/s): 19.57 Ganymede

Yet, demands for space vehicles increasingly complex

→ our understanding of motion in the solar system is actually incomplete

Poincaré (1854-1912)

Poincaré first glimpsed chaos in the gravitational problem in mid-1880's

Contest: Solve for motion of N Bodies

Poincaré did not solve (not even N = 3)

Prize for understanding + many new ideas

Three-volume memoir

- foundation for several branches of math
- <u>new</u> approach

New era in celestial mechanics

Poincaré as visionary: sensitive dependence on initial conditions

Deterministic Chaos

Contradiction in terms? Wild, unpredictable behavior?

Dynamical systems theory and chaos → long-term behavior typically quite complicated

Properties:

- 1. Sensitive to initial conditions Minor changes cause huge fluctuations
- 2. Many frequencies are excited
- 3. Periodic orbits must be dense System appears unpredictable
- 4. Behavior must be <u>locally unstable;</u> global stability
- Goal: fixed points
periodic pointsBoth can be
attractive

Astrodynamics: N-Body Problem

Where are we?

- •Simplest system can have both regular and chaotic behavior
- •Laplace Universe gigantic and perfect watch has disappeared
- •Poincaré Dynamical Systems + 'chaos'
- Opened new opportunities
 - Examples of <u>natural motion</u> modeled in terms of multiple bodies

Shepherd Moons - Saturn

Astrodynamics: N-Body Problem

Where are we?

- •Simplest system can have both regular and chaotic behavior
- •Laplace Universe gigantic and perfect watch has disappeared
- •Poincaré Dynamical Systems + 'chaos'
- Opened new opportunities
 - Examples of <u>natural motion</u> modeled in terms of multiple bodies
 - Examples of <u>natural motion</u> for man-made vehicles and better understanding of Earth as well as our solar system

Phenomena that affects Earth

Astrodynamics: N-Body Problem

Where are we?

- •Simplest system can have both regular and chaotic behavior
- •Laplace Universe gigantic and perfect watch has disappeared
- •Poincaré Dynamical Systems + 'chaos'
- Opened new opportunities
 - Examples of <u>natural motion</u> modeled in terms of multiple bodies
 - Examples of <u>natural motion</u> for man-made vehicles and better understanding of Earth as well as our solar system_____

Phenomena that affects Earth

Artemis

Physics of Northern Lights to Lunar Wake

Moon

Artemis P1 /P2 Baseline Trajectory

To Sun

Frame: S-E Rotating (Earth-Centered)

Astrodynamics: N-Body Problem

Where are we?

- •Simplest system can have both regular and chaotic behavior
- •Laplace Universe gigantic and perfect watch has disappeared
- •Poincaré Dynamical Systems + 'chaos'
- Opened new opportunities
 - Examples of <u>natural motion</u> modeled in terms of multiple bodies
 - Examples of <u>natural motion</u> for man-made vehicles and better understanding of Earth as well as our solar system

Knowledge of our Earth + solar system

Titan 66 Flyby

A Long Look at Titan

Enceladus Flyby

Jan. 28, 2010

The Plume's the Thing

May 18, 2010

Astrodynamics: N-Body Problem

- Poincaré: "real aim of celestial mechanics is not to calculate the ephemerides but to recognize if Newton's law is sufficient to explain the phenomena"
- You can agree or not \rightarrow But, although land spectacularly on Titan \rightarrow

Titan Ballute

still cannot foresee if one of a thousand asteroids will someday end up hitting the Earth!

Terrestrial Planet Finder

Joint NASA/ESA Jupiter Europa + Jupiter Ganymede JOI 2025

Interstellar Vehicles 2037 ??

Space Tourism and Hotels

Future?

FOREWORK BY SPACE DRUTTLE COMMANDER RICK SEARFOSS