Mission Design:

 Exploring the Solar SystemKathleen Howell
Purdue University

Potential Destinations?

Planets: Saturn?

Dwarf Planet?

Namaka

Haumea

Makemake

Dwarf Planet:

(a) in orbit around the Sun
(b) sufficient mass for selfgravity to assume nearly round shape
(c) neighborhood around orbit not cleared
(d) is not a satellite

Earth

Eris

Ceres

Pluto

Izion

$2003 \mathrm{EL}_{61}$	$2005 \mathrm{FY}_{8}$	Seina	Orcus	Quanar	$2002 \mathrm{TX}_{300}$
	C	-		6	e
$2002 \mathrm{AWH}_{10}$	Varuna	Izion	Vesta	Pallas	Hyylea

Kuiper Belt Object?

Comets

Oort Cloud Object?

The Oort Cloud
(comprising many
billions of comets)
Oort Cloud cutaway
drawing adaplod fiom ilvsitraton (NASA, JPL)

Mission Design

Mission Architectures
Mission Requirements
Mission Planning
Technology Utilization
Cost/Performance Analysis

Conics from Kepler and Newton

Conic Orbits: Three-dimensional Characteristics

Dwarf Planet Eris

Orbit of Eris (136199 Eris)

Perihelion: 37.77 AU
Aphelion: 97.56 AU
Orbital period: 557 years

Problem:

Design spacecraft trajectory $\quad \Rightarrow \quad$ specific requirements

Approach:
Traditional Two-Body
- Analytical Solns $\left\{\begin{array}{l}\text { ellipses } \\ \text { parabolas } \\ \text { hyperbolas }\end{array}\right.$
- Identify various trajectory arcs; patch together
• Transition to full model
• Optimize in full model

Sputnik

Launch: October 4, 1957 $1^{\text {st }}$ in Sputnik Program

Technology First !!

Orbit: 7310×6586 km 96.2 minutes/rev

Science measurements:
Density of upper layer of atmosphere
\rightarrow changes in orbit
Radio signal distribution data in ionosphere Meteoroid detection

Play \#1

ISS Trajectory

PROJECT APOLLO

LUNAR LANDING FLIGHT TECHNIQUES

PURDUE

U N I VERSITY

Lunar Prospector

Tirajectory

Orbit

Type: Orbiter

Central Body: Earth
Epoch start: 1998-01-07 03:30:00 UTC
Orbital Parameters

Periapsis	Apoapsis	Period	Inclination	Eccentricity
1.03093004226	56.2900009155	216.100006103	29.2000007629	0.96403002738
68457 RE	27344 RE	51562 hours	39453°	95264

Trajectory Design

Combine arcs of 3 shapes: ellipses
parabolas
hyperbolas

Trajectory Design

Combine arcs of 3 shapes: $\left.\begin{array}{l}\text { ellipses } \\ \text { parabolas } \\ \text { hyperkolas }\end{array}\right\} \begin{gathered}\text { Different } \\ \text { Energy Levels } \\ \text { 'Stable' }\end{gathered}$
Maneuver (ΔV)

Maneuver (ΔV)

Hohmann Transfer

Construction:

1. Circular \#1
2. Maneuver to Ellipse \#2
3. Remain in Ellipse \#2; return
4. Maneuver to Ellipse \#3

Hohmann Transfer to Uranus

TOF = 16 years
$\Delta V=16 \mathrm{~km} / \mathrm{s}$

Hohmann
\rightarrow not the way to get to Uranus!!! Both Voyager launches on Titan III-Centaurs; only enough energy to reach Jupiter

Both used gravity assists to reach final destinations and even out of the solar system!

Hohmann Schematic Transfer:

Earth Orbit

Cassini to Saturn

Transfer Trajectory:
Depart Earth 10/97
Pass Venus 4/98
Pass Venus 6/99
Pass Earth 8/99
Pass Jupiter 12/00
Arrive Saturn 7/04

Cassini to Saturn

Venus Flyby

Cassini
Spacecraft
First Venus Swingby
April 26, 1998
\qquad

Jupiter Swingby December 30, 2000

Launch to 1st Venus Swingby
1st Venus Swingby to 2nd Venus Swingby
2nd Venus Swingby to Earth Swingby, Past Jupiter to Saturn

Cassini Spacecraft (Purple) Enroute to Saturn (Gold Orbit)

Cassini Spacecraft (Purple): Enroute to Saturn (Gold)

Mercury Messenger

Science and exploration goals cannot always be met using conics, even with gravity assists!!

Innovation in Trajectory Design 1970's

Poincaré \rightarrow Three-Body Problem

Modern Computers +

Advances in Mathematics

Two assumptions expand options:

1. New perspective: View from Earth?
2. Multiple Gravity Fields

Orbit propagated for 4 conic periods:
$4 * 19$ days $=75.7$ days

Inertial View

Orbits propagated for 4 conic periods:
4*19 days $=75.7$ days

Inertial View

Orbit propagated for 4 conic periods: 4*19 days $=75.7$ days

Inertial Frame

Play \#2

Orbit propagated for 4 conic periods:

To Sun

Rotating View

Rotating Frame

Inertial Frame

Rotating Frame

Orbit propagated for 4 conic periods: $4 * 19$ days $=75.7$ days

Inertial View

Orbits propagated for 4 conic periods: $4 * 19$ days $=75.7$ days

Inertial View

Orbits propagated for 4 conic periods: $4 * 47$ days $=188$ days

Inertial View

Orbits propagated for 4 conic periods:
4*47 days $=188$ days

Inertial View

Resonant orbit propagated for 5.2 yea

Resonant orbit propagated for 5.2 years

Inertial View

Problem:

Design spacecraft trajectory \Rightarrow specific requirements

Approaches:	
Traditional Two-Body	N-Body Regimes (even N = 3)
• Analytical Solns $\left\{\begin{array}{l}\text { ellipses } \\ \text { parabolas } \\ \text { hyperbolas }\end{array}\right.$	• No analytical solutions • Limited knowledge of solution arcs
• Identify various trajectory arcs; patch together	• Little understanding of arc "overlap"
• Transition to full model	• Transition \rightarrow propagate single state
• Optimize in full model	• Optimizing relies on GOOD guess;

Poincaré \rightarrow Three-Body Problem

New View + Additional
Grav Fields

What new options exist?

1. How do we find new solutions?

Earth
2. What do they look like?
3. How do we start?

Equilibrium Solutions

Earth-Moon Distance: 384,000 km Earth Scale: 5x

Moon Scale: 10x

Play \#4

Earth-Moon Distance: 384,000 km
Earth Scale: 5x
Moon Scale: 10x

L3

fale: 15x
Scale: 100x arth Distance: 1AU

L_{1} and L_{2} Lyapunov Families

Sun-Earth System

Lyapunov Orbits

L_{1} Halo Family

L_{1} and L_{2} Lyapunov Families

L_{1} and L_{2} Halo Families

\&

L_{1} and L_{2} Halo Families

$\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ Halo Families

Innovation in Trajectory Design 1970's

Relict-2

MAP

SOHO

$\cdot L_{1}$ Halo Orbit: $A z=120,000 \mathrm{~km}, ~ A y=666,672 \mathrm{~km}$

RLP Coordinate System

Fight Dynami
NASA-GSFC

SOHO orbit schematic

Relict-2

MAP

PURDUE
 UNIVERSITY

Genesis Trajectory

THEMIS Background: Substorms

PRIME MISSION (FY08-09) SCIENCE GOALS:

Primary:

"How do substorms operate?"

- One of oldest, most important questions in Geophysics
- A turning point in understanding
of the dynamic magnetosphere

First bonus science:

"What accelerates storm-time 'killer' electrons?"

- A significant contribution to space weather science

Second bonus science:

"What controls efficiency of solar wind - magnetosphere coupling?"

- Provides global context of solar wind \& magnetosphere interaction

RESOLVING THE PHYSICS OF ONSET AND EVOLUTION OF SUBSTORMS

Principal Investigator
Vassilis Angelopoulos, UCLA
Mission Operations Manager
Manfred Bester, UCB

EPO Lead
Laura Peticolas, UCB

THEMIS

Primary Objective:

identify physical mechanism that leads to explosive release of energy in substorms

- 2-year mission (launch 2/07); 5 identical probes
- First NASA launch of five satellites to study substorms
- THEMIS probes align over North Am @ 4 day intervals
- Alignments - in situ measurements of particles/fields \rightarrow identify region where substorm energy release; insight into process
- Successful result -- Explosion of magnetic energy at $1 / 3$ distance to moon powers substorms due to magnetic reconnection (stressed magnetic field lines suddenly "snap" to a new shape)

Blue - Earth's magnetic field over the night side White flash - energy released during substorms
\rightarrow night side magnetic field acts as slingshot; propels electrons toward Earth.

Artemis P1 /P2 Baseline Trajectory

Trajectory Baseline
 Lunar Gravity + Solar Perturbation + Libration Point Orbits + Lunar Orbits

Artemis P1 /P2 Baseline Trajectory

P1: Phase 1

P1: Phase 1

P1 Backflip Family

Earth-Moon Rotating Frame
(Moon-Centered)

P1 Backflip Family

Earth-Moon Rotating Frame
(Moon-Centered)

Backflip Stable Manifold Earth-Moon Rotating Frame

P1 Phase 2

- DSM on 2010 March 15
- Sun-Earth L_{1} Lissajous Stable Manifold

P1: Phase 2

- Max Range (6-Jun-2010)
- Trajectory and Sun-Earth L_{1} Lissajous Unstable Manifold

Max Range

P1: Phases 3 and 4

Earth-Moon Rotating Frame
(Moon-Centered)

P1 Phase 3 Two viewpoints on the L_{1} to L_{2} transfer

- Simultaneously matches the stable manifold surface associated with the

P1: Phases 3 and 4

Earth-Moon Rotating Frame
(Moon-Centered)

P1: Phase 4

Earth-Moọn Rotating Frame
(Moon-Centered)

Artemis P1 /P2 Baseline Trajectory Design

