Mission Design: Exploring the Solar System

Kathleen Howell Purdue University

Potential Destinations?

Planets: Saturn?

Kuiper Belt Object?

Conics from Kepler and Newton

Conic Orbits: Three-dimensional Characteristics

Orbit of Eris (136199 Eris)

Perihelion: 37.77 AU Eccentricity: 0.44 Aphelion: 97.56 AU Inclination: 44° Orbital period: 557 years

Sputnik

Launch: October 4, 1957 1st in Sputnik Program

Technology First !!

Orbit: 7310 x 6586 km 96.2 minutes/rev

Science measurements: Density of upper layer of atmosphere → changes in orbit Radio signal distribution data in ionosphere Meteoroid detection

Play #1

ISS Trajectory

PROJECT APOLLO LUNAR LANDING FLIGHT TECHNIQUES

PURDUE UNIVERSITY

Lunar Prospector

Type: Orbiter

Central Body: Earth

Epoch start: 1998-01-07 03:30:00 UTC

Orbital Parameters

Periapsis	Apoapsis	Period	Inclination	Eccentricity
1.03093004226	56.2900009155	216.100006103	29.2000007629	0.96403002738
68457 RE	27344 RE	51562 hours	39453°	95264

Aeronautics and Astronautics

Hohmann Transfer

Construction:

- 1. Circular #1
- 2. Maneuver to Ellipse #2
- 3. Remain in Ellipse #2; return
- 4. Maneuver to Ellipse #3

Hohmann Transfer to Uranus

TOF = 16 years $\Delta V = 16 \text{ km/s}$ Hohmann \rightarrow not the way to get to Uranus!!! Both Voyager launches on Titan **III-Centaurs; only enough energy** to reach Jupiter Both used gravity assists to reach final destinations and even out of the solar system!

Hohmann Schematic Transfer:

Cassini to Saturn

Depart Earth 10/97 Pass Venus 4/98 Pass Venus 6/99 Pass Earth 8/99 Pass Jupiter 12/00 Arrive Saturn 7/04

Cassini to Saturn

Cassini Launch October 1997

Cassini Spacecraft (Purple) Enroute to Saturn (Gold Orbit)

Cassini Spacecraft (Purple) Enroute to Saturn (Gold)

Science and exploration goals cannot always be met using conics, even with gravity assists!!

Innovation in Trajectory Design 1970's

Poincaré → Three-Body Problem

â

Modern Computers + Advances in Mathematics

Two assumptions expand options:

- 1. New perspective: View from Earth?
- 2. Multiple Gravity Fields

Orbit propagated for 4 conic periods: 4*19 days = 75.7 days

Inertial View

Orbits propagated for 4 conic periods: 4*19 days = 75.7 days

Inertial View

Orbit propagated for 4 conic periods: 4*19 days = 75.7 days

Rotating View

Orbit propagated for 4 conic periods: 4*19 days = 75.7 days

Orbits propagated for 4 conic periods: 4*19 days = 75.7 days

Orbits propagated for 4 conic periods: 4*47 days = 188 days

Orbits propagated for 4 conic periods: 4*47 days = 188 days

Resonant orbit propagated for 5.2 years

Problem:

Design spacecraft trajectory \implies <u>specific</u> requirements

Approaches:	
Traditional Two-Body	N-Body Regimes (even N = 3)
• Analytical Solns - - - - - - - - - -	 No analytical solutions Limited knowledge of solution arcs
 Identify various trajectory arcs; patch together 	• Little understanding of arc "overlap"
 Transition to full model 	 Transition → propagate single state
Optimize in full model	 Optimizing relies on GOOD guess;

Poincaré → Three-Body Problem

New View + Additional Grav Fields

What new options exist?

- 1. How do we find new solutions?
- 2. What do they look like?
- 3. How do we start? Equilibrium Solutions

Earth-Moon Distance: 384,000 km Earth Scale: 5x Moon Scale: 10x

▲3

Play #4

<u>●</u> L4

L1 L2

L5

Earth-Moon Distance: 384,000 km Earth Scale: 5x Moon Scale: 10x

● L3

L5

ale: 15x Scale: 100x arth Distance: 1AU

L3

.

. . .

L11.2

<mark>e</mark>L5

. .

L₁ and L₂ Lyapunov Families

L₁ and L₂ Lyapunov Families

L₁, L₂, L₃ Halo Families

Innovation in Trajectory Design 1970's

Relict-2

MAP

SOHO

Mission: \oplus to L₁ •L₁ Halo Orbit: Az= 120,000 km, Ay=666,672 km

Relict-2

MAP

Genesis Trajectory

THEMIS Background: Substorms

PRIME MISSION (FY08-09) SCIENCE GOALS:

Primary:

"How do substorms operate?"

- One of oldest, most important questions in Geophysics
- A turning point in understanding of the dynamic magnetosphere

First bonus science:

"What accelerates storm-time 'killer' electrons?"

- A significant contribution to space weather science

Second bonus science:

"What controls efficiency of solar wind – magnetosphere coupling?"

– Provides global context of solar wind & magnetosphere interaction

RESOLVING THE PHYSICS OF ONSET AND EVOLUTION OF SUBSTORMS

<u>Principal Investigator</u> Vassilis Angelopoulos, UCLA

Mission Operations Manager Manfred Bester, UCB

> EPO Lead Laura Peticolas, UCB

THEMIS

Primary Objective: identify physical mechanism that leads to explosive release of energy in substorms

- 2-year mission (launch 2/07); 5 identical probes
- First NASA launch of five satellites to study substorms
- THEMIS probes align over North Am @ 4 day intervals
- Alignments in situ measurements of particles/fields → identify region where substorm energy release; insight into process
- Successful result -- Explosion of magnetic energy at 1/3 distance to moon powers substorms due to magnetic reconnection (stressed magnetic field lines suddenly "snap" to a new shape)

PURDUE UNIVERSITY

Blue - Earth's magnetic field over the night side White flash - energy released during substorms

→ night side magnetic field acts as slingshot; propels electrons toward Earth.

Artemis P1 /P2 Baseline Trajectory

To Sun

Frame: S-E Rotating (Earth-Centered)

Trajectory Baseline

Lunar Gravity + Solar Perturbation + Libration Point Orbits + Lunar Orbits

Phase 1

Phase 3

Artemis P1 /P2 Baseline Trajectory

Frame: S-E Rotating (Earth-Centered)
P1 Trajectory

Earth-Moon Rotating Frame (Moon-Centered)

ar 1999 An An Ang

•

P1 Backflip Family

P1 Backflip Family

Earth-Moon Rotating Frame

(Moon-Centered)

Backflip Stable Manifold Earth-Moon Rotating Frame

P1: Phases 1 and 2

AR.

· ·

Max Range

- DSM on 2010 March 15
- Sun-Earth L₁ Lissajous Stable Manifold

Deep-Space Maneuver (DSM)

- Max Range (6-Jun-2010)
- Trajectory and Sun-Earth L₁
 Lissajous Unstable Manifold

Max Range

P1: Phases 3 and 4

en e a _{en} a

P1 Phase 3 Two viewpoints on the L₁ to L₂ transfer

 Simultaneously matches the stable manifold surface associated with the

P1Phase3

P1: Phases 3 and 4

en e a _{en} a

Artemis P1 /P2 Baseline Trajectory Design

Frame: S.F. Patating (Farth Contored)