What is the InterPlanetary Superhighway? Kathleen Howell Purdue University

Trajectory → Key Space Technology

Mission-Enabling Technology

Not All Technology is hardware!

•L2

The InterPlanetary Superhighway (IPS)

- Low Energy Orbits for Space Missions
- InterPlanetary Superhighway—"a vast network of winding tunnels in space" that connects the Sun, the planets, their moons, AND many other destinations
- Systematic mapping properly known as InterPlanetary
 Transport Network

Simó, Gómez, Masdemont / Lo, Howell, Barden / Howell, Folta / Lo, Ross / Koon, Lo, Marsden, Ross / Marchand, Howell, Lo / Scheeres, Villac/

Originates with Poincaré (1892)

Applications to wide range of fields

Different View of Problems in N-Bodies

- Much more than Kepler and Newton imagined
- Computationally challenging

Poincaré (1854-1912)

New Era in Celestial Mechanics

"Mathematics is the art of giving the same name to different things" Jules Henri Poincaré

Pioneering Work: Numerical Exploration by Hand

(Breakwell, Farquhar and Dunham)

Current Libration Point Missions

Multi-Body Problem Change our perspective Earth Earth To Sun

Rotating View (Rotates with two bodies)

Inertial View

Multi-Body Problem • Change our perspective • Effects of added gravity fields Earth Earth To Sun

Rotating View

Inertial View

Earth-Moon Distance: 384,000 km Earth Scale: 5x Moon Scale: 10x

Equilibrium Points

<mark>-</mark> L3

L4

L2 L1

<mark>_ L</mark>5

Earth-Moon Distance: 384,000 km Earth Scale: 5x Moon Scale: 10x

• L3

Play #1

_ L4

<mark>e</mark> L5

Sun Scale: 15x Earth Scale: 100x Sun-Earth Distance: 1AU

<mark>●</mark>L3

●L4

Zoom in here

L5

Sun Scale: 15x Earth Scale: 100x Sun-Earth Distance: 1AU

• L3

. .

· · .

<mark>e</mark>L5

.

Sputnik Orbit

Earth-Moon Distance: 384,000 km Earth Scale: 5x Moon Scale: 10x

Periodic Orbits Exist (Locate on Poincaré Sections)

• L3

<mark>.</mark> L5

L4

Ce.

Sun Scale: 15x Earth Scale: 100x Sun-Earth Distance: 1AU

Periodic Orbits Exist

L3

.

<mark>o</mark>L4

<mark>o</mark>L5

.

. .

Sun-Earth Halo Orbits

●L3

Each Orbit: -Additional Surface - Interesting and Very Useful

· · ·

<mark>o</mark>L4

.

.

L1 L2

Sun Scale: 15x Earth Scale: 100x Sun-Earth Distance: 1AU

Key is Unstable Nature

Sun-Earth System L1 Stable Manifold

Point Along Orbit Represents 'Fixed Point'

- One Stable Mode
- Compute Trajectory in Negative Time
- Compute for All Points
- Creates Another Surface -> Transfer Trajectories

L2

- Asymptotic Arrival

Sun-Earth System

Halo to Earth Orbit Transfer (225 Days)

Note Tubular Structure

Sun-Earth System L1 Halo orbit Family

Key is Unstable Nature

Sun-Earth System L1 Unstable Manifold with L2 Stable Manifold

IN

Play #6

L2

Genesis Launch: Aug 8, 2001 Landing: Sept 8, 2004

GENESIS Nominal Mission Trajectory

GENESIS Nominal Mission Trajectory

Sun-Earth System L1 Unstable Manifold with L2 Stable Manifold

IN

L2

GENESIS Nominal Mission Trajectory

L1 Unstable \rightarrow L2 Stable

L2 Unstable for Return

Sun-Earth System

L1 Unstable Manifold with L2 Stable Manifold

Also Natural Objects: Sun-Jupiter System → some comets follow manifold tube structure

Lo – Talk Thurs

L2

Switch to a mission using SE L2 \rightarrow WMAP

L3

ut t

.

. .

●L4

, , ,

<mark>_</mark>L5

Ej

-WMAP

Nominal mission: 27 months + several years extension

Total Payload ~ 830 kg WMAP instruments continuously shaded from the Sun, Earth, and Moon to lower thermal disturbances

Proposed 1995
WMAP Delta II Rocket Launch
Launched June 30, 2001
Kennedy Spaceflight Center Launch, Pad 17B
Almost perfect launch -- on time to the sec

WMAP Spacecraft Trajectory

Move to Future? Earth-Moon System

• L3

<mark>.</mark> L5

L4

EM L1 Gateway

• L2

Telescope Ops at Libration Points Advanced Telescope Array at SE L2

Libration Points in Earth's Neighborhood Every 3-Body System: 5 Fixed Libration Points Generate the InterPlanetary Superhighway

M. Lo

SE L2 Telescope Station

Play #8

Human Servicing at Lunar L₁ Gateway

- Build Instruments & S/C Lunar L₁ Gateway for EL₂
- Service S/C at Earth L₂ from Lunar L₁ Gateway Module

Following Tubes

Earth-Moon L1 Gateway Hub

Lander at Earth-Moon L1 Gateway Station

InterPlanetary Superhighway (IPS) Planets; Moons within Planetary Systems

Spacecraft Between Earth and Moon Ride on Surfaces in Space (Ozimek and Howell, Purdue University)

