How It Began

chris impey

how it ends

STOP

from you to the universe

Chris Impey and Holly Henry

HUMBLE BEFORE THE VOID

FEMPLETON

CHRIS IMPEY

A Little History

Finite or Infinite

What if the black of the black

Does the universe go on forever...

...or is it bounded in space and time?

Newton's universe: eternal and infinite

Because a finite universe is unstable...

...but an finite universe has problems

Island Universe

Herschel mapped the Milky Way

Then Hubble made a breakthrough...

... by measuring the distance to M31

Edwin Hubble expanded the bounds of the universe by a factor of 1000

Ancient Light

Distant light is old light...

We see the Moon as it was a second ago.

We see the Sun as it was 8 minutes ago.

We see the Sirius as it was 9 years ago.

We see M31 as it was 2.5 million yrs ago.

...so big telescopes are time machines

Nearby "Now"

"Recent" Stars

"Long Ago" Galaxies

"Ancient" Universe

The Contents

Normal Matter

More than 99.9% hydrogen and helium

A billion photons for every particle

A typical galaxy has 100 billion stars

This is just in the visible universe

Embrace mediocrity

We find ourselves on an:

- Average planet orbiting
 An mid-sized star in an
- Average galaxy near a
- Medium-sized cluster in
- Unremarkable corner of
- A very large universe

Universe

Us

Big Bang

Cosmic Expansion

Hubble observed galaxy spectra

The light was almost always redshifted

Uniform expansion to a billion light years

There's no center to the expansion

The expansion is described by relativity

Expanding Space-Time

The universe has no center and isn't expanding into anything

Looking Back

Towards First Light

Birth of the Universe: The expansion of the universe began with the hot and dense Big Bang. The cubes show how one region of the universe has expanded with time. The universe continues to expand, but on smaller scales gravity has pulled matter together to make galaxies.

Ten billion times fainter than the eye

Faster than light

Light travels simply and directly in the local universe.

But early expansion of the universe carried any two points away from each other faster than light speed. Distant galaxies are only just becoming visible now.

The physical universe is much larger than the visible universe

Microwave Background

COBE

WMAP

Planck

A baby picture of the universe...

...when it was 1000 times smaller.

This was the time when the "fog" lifted

Small variations of 0.001% represent the "seeds" for the formation of stars and galaxies.

The radiation has been measured at very high precision and is a dramatic confirmation of the big bang model.

The universe was opaque before this.

Stretched 1000-fold by the expansion...

...these microwaves are all around us

Watching the Big Bang

The First Ten Million Years

Early Universe

It's all gone downhill since the big bang

Cosmic Epochs

Big Bang

Radiation era

~300,000 years: "Dark ages" begin

~400 million years: Stars and nascent galaxies form

~1 billion years: Dark ages end

~9.2 billion years: Sun, Earth, and solar system have formed

~13.7 billion years: Present

Calaries evolve

Light elements created within 3 minutes

The first fraction of a second

Comprehending the Singularity

Frontiers

Unity in Nature

The ouroboros

The universe was once smaller than an atom

Broken symmetry

High Temp/Energy

Low Temp/Energy

The breaking of the symmetry in theories of high energy particles is a mechanism for imbalance in antimatter and matter, and for creating particle candidates for the dark matter

At lower energy, the system takes a more specific arrangement, breaking symmetry
Force separation gave a slight imbalance

The demise of anti-matter

Particle annihilated with anti-particles, yielding a billion photons for every one residual particle in the universe.

The inflationary big bang

The standard big bang can't why the universe is smooth and flat, leading to the idea of an epoch of extremely rapid inflation 10^{-35} s after the big bang. The mechanism emerges from the frontier theories that seek to unite all the forces except gravity.

We need a Theory of Everything

String Theory

A deeper level of structure...

String theory postulates dynamic 1-dimensional entities that are only noticeable on scales of 10⁻⁴³ meters, which is 33 orders of magnitude smaller than atomic scales!

...based complex but elegant math

 $\binom{x}{(\sum_{j=1}^{n} a_{j}u_{j}(x))} = \sum_{j=1}^{n} a_{j}u_{j}(x)'$ c = lim f(x), $\int_{\Delta} F = F(x_0 + \Delta x_0) - F(x_0) \quad I_1 = \int_{X} \frac{1}{X} \cdot \frac{1}{X$ $\frac{1}{h} = \frac{1}{h + \infty} \frac{1}{(\sqrt[3]{h+2})^2} + (\sqrt[3]{h+2}) \frac{2}{h = 0} \frac{a_h 2^h}{(a_h + 2)} \lim_{h = 0} \frac{1}{(a_h + 2)} \lim_{h \to \infty} \frac{1}{(a_h + 2)^2} \frac{1}{(a_h + 2)^2} + (\sqrt[3]{h+2}) \lim_{h \to \infty} \frac{1}{(a_h + 2)^2} \frac{1}$ $\left(1+\frac{1}{[n]+1}\right)^{[n+1]} < \left(1+\frac{1}{n}\right)^{n+1} = \psi\left(\frac{1}{2}\right) = \left[\psi\left(\frac{1}{2}\right)\right]^{q}$ $= \int \pi f^{2}(x) dx = \int \pi \left(\frac{t}{h}x\right)^{2} dx = \int \frac{\pi r^{2}}{h^{2}} x^{2} dx \int \left[u, (x) + u_{2}(x) + ...\right]$ $\lim_{x \to \infty} x^3 \left[\frac{1}{3} + \frac{3}{x} + \frac{5}{x^3} + \frac{1}{x^3} \right] = + P_{\mu}(z_0) = \sum a_{\mu} z_0^{\mu} = 0 \lim_{x \to \infty} f(x) = 1$ $+x)^{n} = \sum C_{n}^{k} a^{n-k} x^{k} \left[\left(\sum_{i}^{n} A_{i} f_{i}(x) \right) dx^{n} \right]$ Aj f; (x)dx+C I,= / = dx > a 2 (a to) P. (2. $\lim_{y \to 0} \log_{a} \left(\frac{\chi + h}{\chi} \right)^{1/h} = \lim_{h \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{h \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_{x \to 0} \log_{a} \frac{1}{\chi} \left(1 + \frac{h}{\chi} \right)^{1/h} = \lim_$ $P_{\mu}(z_{0}) = \sum a_{\mu} z_{0}^{\mu} = 0$ I = I = I

String theory is based on beautiful but very difficult mathematics. The 10-dimensional space-time that the theory is based on has never been observed

The Multiverse

Inflation may have stretched tiny quantum fluctuations into large-scale ripples.

The basis for parallel universes

Quantum fluctuations are a mechanism for multiple realizations of the universe

String theory "landscape"

Vacua create quantum fluctuations and provide initial conditions for inflation. String theory provides a context for the "multiverse."

Self-reproducing universe

The multiverse spawns space-times with randomly different laws of physics, very few of which are hospitable universes.

Scenario for an eternal universe

Curved space contains...

...stars, which are orbited by

united and the second se

...brains and ...

...stuff, which is made o

Stings.

All this from an iota of space-time

Profound mysteries remain but...

...cosmology is one of our greatest triumphs

We are made of tiny particles, and we are part of a vast universe, yet we keep both within our heads.

